Abstract:
A cleaning method for removing a deposit in a processing chamber is provided. The cleaning method includes adjusting a temperature in the processing chamber to a first temperature; supplying a first gas including a hydrogen fluoride gas into the processing chamber in which the temperature is adjusted to the first temperature; adjusting the temperature in the processing chamber to a second temperature that is higher than the first temperature; and supplying a second gas including the hydrogen fluoride gas and an ammonia gas into the processing chamber in which the temperature is adjusted to the second temperature.
Abstract:
A substrate processing method performed by a substrate processing apparatus including: a processing container that processes a substrate; a gas supply that supplies a gas into the processing container; an exhaust device that exhausts a gas from an inside of the processing container; and a gas analyzer that analyzes the gas passing through an exhaust pipe that connects the processing container and the exhaust device. The method includes: performing a processing with a processing gas in the processing container by supplying the processing gas into the processing container; purging the processing gas in the processing container by supplying a purge gas into the processing container; analyzing the processing gas passing through the exhaust pipe by the gas analyzer during the purging the processing gas; and determining a condition of the purging the processing gas based on a result of analyzing the processing gas.
Abstract:
A gas management method includes: heating a raw material container that accommodates a raw material, by a heater, thereby generating a vaporized raw material gas; supplying the vaporized raw material gas together with a carrier gas to a processing container that accommodates a substrate, thereby performing a processing on the substrate; and controlling the heater based on a weight of the substrate after the processing on the substrate.
Abstract:
A cleaning method includes: supplying a cleaning gas in a processing container while continuously increasing a pressure in the processing container in a stepwise manner at a plurality of time points, thereby executing a cleaning of the processing container by removing a film deposited in the processing container; and detecting an end point of the cleaning based on time-dependent data of a concentration of a predetermined gas generated during the executing the cleaning, for each pressure of the plurality of time points. The executing the cleaning is implemented when the time-dependent data of the concentration of the predetermined gas generated in the continuously increasing the pressure changes from an increasing state to a decreasing state after exceeding a threshold value.
Abstract:
A cleaning method for removing a film deposited in a processing container includes: executing a cleaning of a processing container by supplying a cleaning gas to the processing container while increasing a pressure in the processing container in a stepwise manner at a plurality of time points, thereby removing a film deposited in the processing container; and detecting an end point of the cleaning based on time-dependent data of a concentration of a predetermined gas generated during the execution of the cleaning, for each pressure of the plurality of time points.
Abstract:
A deposition method of forming silicon oxide films collectively on a plurality of substrates in a processing container performs a plurality of execution cycles each of which includes: supplying a silicon material gas containing an organoamino-functionalized oligosiloxane compound into the processing container; and supplying an oxidizing gas into the processing container adjusted to a pressure of 1 Torr to 10 Torr (133 Pa to 1333 Pa).
Abstract:
A method for forming a silicon oxide film on a tungsten film includes performing a first process of arranging an object to be processed in a processing container kept under a reduced pressure, the object including a tungsten film and a natural oxide film being formed on a surface of the tungsten film, performing a second process of forming a silicon seed layer by adsorbing a silicon-containing gas to the tungsten film, subsequently performing a third process of annealing the object and forming the silicon oxide film by a reaction of the natural oxide film and the silicon seed layer and subsequently performing a fourth process of forming an ALD silicon oxide film by ALD using a silicon-containing gas and an oxygen active species.
Abstract:
Provided is a method of protecting a component of a film forming apparatus, which includes forming a film having a rough surface on a surface of a component which is provided in the interior of the processing chamber of a film forming apparatus such that the surface of the component is coated with the film having the rough surface, the component being exposed to a film forming atmosphere during a film forming process. Forming a film having a rough surface on a surface of the component is in some embodiments performed before or after the film forming process is performed on target substrate and in some cases both before and after.
Abstract:
A film forming method for forming a thin film composed of a SiOCN layer containing at least silicon (Si), oxygen (O), carbon (C) and nitrogen (N) on a surface of a workpiece within an evacuable processing vessel optionally using a silane-based gas, a hydrocarbon gas, a nitriding gas or an oxidizing gas includes forming a first film including at least Si, C and N, and forming a second film including at least Si, C and O. The forming a first film and the forming a second film are set as a cycle and the cycle is performed once or more.