Abstract:
A film forming method includes: a preparation process of preparing a substrate having a surface from which a first film without containing silicon and a second film are exposed; a first film formation process of forming a self-assembled monolayer, which has a fluorine-containing functional group and inhibits formation of a third film containing silicon, on the first film; a second film formation process of forming the third film on the second film; a modification process of decomposing the self-assembled monolayer by plasma using a gas containing hydrogen and nitrogen while maintaining a temperature of the substrate to be 70 degrees C. or lower, so that a side portion of the third film, which is formed in a vicinity of the self-assembled monolayer, is modified into ammonium fluorosilicate by active species contained in the decomposed self-assembled monolayer; and a removal process of removing the ammonium fluorosilicate.
Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
Abstract:
There is provided an etching method which includes supplying an etching gas including an H2 gas or an NH3 gas to a target substrate having a germanium portion in an excited state; and etching the germanium portion.
Abstract:
There is provided a nitride film forming method which includes: performing a pretreatment in which a chlorine-containing gas is supplied while heating a substrate to be processed having a first base film and a second base film formed on the substrate to a predetermined temperature, and is adsorbed onto a surface of the first base film and a surface of the second base film; and forming a nitride film on the first base film and the second base film subjected to the pretreatment, by an ALD method or a CVD method, using a raw material gas and a nitriding gas, while heating the substrate to be processed to a predetermined temperature.
Abstract:
A method of forming a silicon oxide film includes forming a silicon film on a base, the base being a surface to be processed of an object to be processed, and forming a silicon oxide film on the base by oxidizing the silicon film. Between the forming a silicon film and the forming a silicon oxide film, exposing the object to be processed having the silicon film formed thereon to an atmosphere containing at least an oxidizing component is performed.
Abstract:
Provided are a substrate processing method and a substrate processing apparatus, wherein a silicon oxide film is favorably embedded. The substrate processing method includes forming a silicon oxide film by repeating a cycle a plurality of times, the cycle including: forming an adsorption layer by supplying a silicon-containing gas to a substrate having a depression formed therein and causing the silicon-containing gas to be adsorbed on the substrate; etching at least a portion of the adsorption layer by supplying a shape control gas to the substrate; and supplying an oxygen-containing gas to the substrate and causing the oxygen-containing gas to react with the adsorption layer, wherein the temperature of the substrate is 400° C. or lower.
Abstract:
A substrate processing method includes: (a) carrying a substrate having a first film with a recess, and a mask into a first chamber; (b) adjusting the substrate temperature to 200° C. or higher; (c-1) supplying silicon-containing reactive species into the first chamber, thereby adsorbing the species onto the side wall of the recess; and (c-2) supplying nitrogen-containing reactive species into the first chamber, thereby forming a second film on the side wall of the recess; (d) carrying the substrate into a second chamber; and (e) adjusting the substrate temperature to 100° C. or lower; and (f) etching the bottom of the recess. Further, (a) to (f) are repeated in this order until an aspect ratio of a depth dimension from the opening of the mask to the bottom of the recess becomes 50 or more.
Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
Abstract:
A film forming method forms a film containing at least silicon and oxygen on a substrate. The film forming method includes: a) supplying a metal containing catalyst to the substrate; b) supplying a hydrogen containing gas to the substrate; and c) supplying a silicon precursor containing silanol to the substrate.
Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.