Abstract:
A dechuck control method includes performing a discharge process by introducing an inert gas into a processing chamber and maintaining the pressure within the processing chamber at a first pressure; monitoring the pressure of a heat transmitting gas supplied to the processing object rear face and/or the leakage flow rate of the heat transmitting gas; obtaining the amount and polarity of the residual electric charge of the electrostatic chuck surface and applying a voltage for supplying an electric charge that is of the same amount as the residual electric charge but of the opposite polarity to a chuck electrode; evacuating the inert gas from the processing chamber while applying the voltage to the chuck electrode and reducing the pressure within the processing chamber to a second pressure; and turning off the voltage applied to the electrostatic chuck and dechucking the processing object from the electrostatic chuck.
Abstract:
A plasma etching method is performed by forming a desired pattern of a mask into a film including a zirconium oxide film by plasma etching with plasma generated from a first gas. The first gas consists of at least one chloride-containing gas of the group of boron trichloride, tetrachloromethane, chloride and silicon tetrachloride, at least one hydrogen-containing gas of the group of hydrogen bromide, hydrogen and methane, and a noble gas. An underlying film of a silicon oxide film or an amorphous carbon film is provided underneath the zirconium oxide film, and an etching selectivity of the zirconium oxide film to the underlying film is greater than or equal to one.
Abstract:
A dechuck control method includes performing a discharge process by introducing an inert gas into a processing chamber and maintaining the pressure within the processing chamber at a first pressure; monitoring the pressure of a heat transmitting gas supplied to the processing object rear face and/or the leakage flow rate of the heat transmitting gas; obtaining the amount and polarity of the residual electric charge of the electrostatic chuck surface and applying a voltage for supplying an electric charge that is of the same amount as the residual electric charge but of the opposite polarity to a chuck electrode; evacuating the inert gas from the processing chamber while applying the voltage to the chuck electrode and reducing the pressure within the processing chamber to a second pressure; and turning off the voltage applied to the electrostatic chuck and dechucking the processing object from the electrostatic chuck.
Abstract:
There is provided a plasma etching method for etching a base film by a plasma using a photoresist as a mask. The method includes etching the base film by the plasma, under a first processing condition in which a selectivity of the photoresist to the base film is set to a first selectivity, while using as a mask the photoresist formed in a predetermined pattern by exposure and development and a scum remaining in the photoresist, without performing a process of removing the scum; and switching, during the etching of the base film, the first processing condition to a second processing condition in which the selectivity of the photoresist to the base film is set to a second selectivity lower than the first selectivity and further etching the base film by a plasma while using the photoresist as a mask under the second processing condition.
Abstract:
A plasma processing method for processing a silicon containing film formed on a substrate including a step of removing a reaction product with a first plasma formed from a first gas containing halogen, hydrogen, and carbon in a case where the reaction product is formed when performing an etching process on the silicon containing film by using an etching mask having an etching pattern.
Abstract:
A plasma processing method includes an etching process of etching an insulating film formed on a processing target object in a chamber by plasma of a first fluorine-containing gas with a TiN film having a preset pattern as a mask; a modifying process of modifying, between a carbon-containing film and a Ti-containing film adhering to a component within the chamber, a surface of the Ti-containing film by plasma of an oxygen-containing gas while removing the carbon-containing film by the plasma of the oxygen-containing gas, after the etching process; a first removing process of removing a TiO film, which is obtained by modifying the surface of the Ti-containing film, by plasma of a second fluorine-containing gas; and a second removing process of removing a residual film of the Ti-containing film, which is exposed by removing the TiO film, from the component within the chamber by plasma of a chlorine-containing gas.