Abstract:
A treatment solution supply apparatus to supply a treatment solution to a treatment solution discharge unit via a supply path that is provided with a filter configured to remove foreign substances in the treatment solution and a tubephragm pump to send the treatment solution, the supply path has an opening/closing valve on an upstream side of the tubephragm pump and the filter, and a suck-back valve on a downstream side of the tubephragm pump and the filter, and includes a control unit to control at least the tubephragm pump, the opening/closing valve, and the suck-back valve, wherein the control unit performs: a control of stopping sending of the treatment solution from the tubephragm pump; and a control of suspending discharge of the treatment solution from the treatment solution discharge unit by operation of the suck-back valve, and then closing the opening/closing valve to stop the discharge.
Abstract:
A substrate cleaning method includes: arranging a substrate within a processing container; spraying gas from a spray port of a gas nozzle arranged within the processing container; causing vertical shock waves, generated by spraying the gas from the gas nozzle, to collide with a main surface of the substrate; and removing particles adhering to the main surface of the substrate, by causing the vertical shock waves to collide with the main surface of the substrate.
Abstract:
An interface station of a coating and developing treatment system has: a cleaning unit cleaning at least a rear surface of a wafer before the wafer is transferred into an exposure apparatus; an inspection unit inspecting the rear surface of the cleaned wafer whether the wafer is exposable, before it is transferred into the exposure apparatus; wafer transfer mechanisms including arms transferring the wafer between the units and a wafer transfer control part controlling operations of the wafer transfer mechanisms. When it is determined that a state of the wafer becomes an exposable state by re-cleaning in the cleaning unit as a result of the inspection, the wafer transfer control part controls the wafer transfer mechanisms to transfer the wafer again to the cleaning unit.
Abstract:
A substrate processing apparatus includes: a processing container including a processing chamber; a holder configured to hold a substrate in the processing chamber; and a nozzle configured to jet a gas to irradiate a first main surface of the substrate with a gas cluster. The processing container includes an opposing wall including a first opposing surface facing the first main surface of the substrate, a plate provided on a portion of the first opposing surface, and a through-hole configured to pass through the opposing wall and the plate. The plate has a second opposing surface facing the first main surface. The through-hole is a passage of the gas and has an outlet on the second opposing surface. A first gap is formed between the opposing wall and the substrate. A second gap is formed between the plate and the substrate and is narrower than the first gap.
Abstract:
A substrate cleaning method includes: arranging a substrate within a processing container; spraying gas from a spray port of a gas nozzle arranged within the processing container; causing vertical shock waves, generated by spraying the gas from the gas nozzle, to collide with a main surface of the substrate; and removing particles adhering to the main surface of the substrate, by causing the vertical shock waves to collide with the main surface of the substrate.
Abstract:
An interface station of a coating and developing treatment system has: a cleaning unit cleaning at least a rear surface of a wafer before the wafer is transferred into an exposure apparatus; an inspection unit inspecting the rear surface of the cleaned wafer whether the wafer is exposable, before it is transferred into the exposure apparatus; wafer transfer mechanisms including arms transferring the wafer between the units and a wafer transfer control part controlling operations of the wafer transfer mechanisms. When it is determined that a state of the wafer becomes an exposable state by re-cleaning in the cleaning unit as a result of the inspection, the wafer transfer control part controls the wafer transfer mechanisms to transfer the wafer again to the cleaning unit.
Abstract:
An interface station of a coating and developing treatment system has: a cleaning unit cleaning at least a rear surface of a wafer before the wafer is transferred into an exposure apparatus; an inspection unit inspecting the rear surface of the cleaned wafer whether the wafer is exposable, before it is transferred into the exposure apparatus; wafer transfer mechanisms including arms transferring the wafer between the units and a wafer transfer control part controlling operations of the wafer transfer mechanisms. When it is determined that a state of the wafer becomes an exposable state by re-cleaning in the cleaning unit as a result of the inspection, the wafer transfer control part controls the wafer transfer mechanisms to transfer the wafer again to the cleaning unit.