Abstract:
A substrate processing apparatus includes; a carrier block; a first processing block including first lower and upper processing blocks to deliver a substrate to and from the carrier block; a second processing block including second lower and upper processing blocks provided adjacent to the first lower and upper processing blocks; a relay block including a lifting and transferring mechanism that delivers the substrate between the second lower and upper processing blocks; a controller that controls an operation of each main transfer mechanism such that one of upper and lower processing blocks forms an outward path through which the substrate is transferred from the carrier block to the relay block and the other forms a return path through which the substrate is transferred from the relay block to the carrier block; and a bypass transfer mechanism provided for each of the first and second processing blocks.
Abstract:
A substrate processing apparatus includes plural heating modules each including a table on which a substrate is placed to be heated, the substrate having plural heated zones. The table has plural heaters each assigned to heat respective ones of the heated zones. Heat generation of the heaters is controlled independently. A control unit controls the heaters such that integrated quantities of heat of the respective heated zones given by the corresponding heaters from first to second time point are substantially identical to each other in each of the heating modules, and are substantially identical to each other among the heating modules. The first time point is set when a temperature transition profile of the substrate is rising toward a process temperature after placing the substrate on the table under a condition where heat generation of the heaters is stable. The second time point is set after the temperature transition profile reaches the process temperature.
Abstract:
A substrate holder positioning method, capable of positioning a substrate holder without using any positioning jig, includes: measuring a first position of a substrate held on a substrate holder included in a substrate carrying mechanism; carrying the substrate held on the substrate holder to a substrate rotating unit for holding and rotating the substrate; turning the substrate held by the substrate rotating unit through a predetermined angle by the substrate rotating unit; transferring the substrate turned by the substrate rotating unit from the substrate rotating unit to the substrate holder; measuring a second position of the substrate transferred from the substrate rotating unit to the substrate holder; determining the position of the center of rotation of the substrate rotating unit on the basis of the first and the second position; and positioning the substrate holder on the basis of the position of the center of rotation.
Abstract:
A substrate treatment system comprise a treatment station having a plurality of treatment units provided at multiple tiers in an up-down direction, a cassette mounting table on which a cassette housing a plurality of wafers W is mounted, and a wafer transfer mechanism arranged between the treatment station and the cassette mounting table, wherein a delivery block in which a plurality of delivery units are provided at multiple tiers is provided between the treatment station and the wafer transfer mechanism, the delivery units temporarily housing a wafer to be transferred between the cassette mounting table and the treatment station and a wafer to be transferred between the tiers of the treatment units. The wafer transfer mechanism includes a first transfer arm that transfers a wafer between the cassette mounting table and the delivery block, and a second transfer arm that transfers a wafer between the tiers of the delivery units.
Abstract:
A treatment solution supply apparatus for supplying a treatment solution to a solution treatment apparatus which applies the treatment solution to a substrate to perform a predetermined treatment, there being a plurality of solution treatment apparatuses which are supply destinations of the treatment solution, the treatment solution supply apparatus includes: a sending unit common among the plurality of solution treatment apparatuses, the sending unit being configured to send the treatment solution stored in a treatment solution supply source to each of the plurality of solution treatment apparatuses; and a control unit configured to control the sending unit, wherein the sending unit includes a plurality of pumps configured to suck the treatment solution and load the treatment solution thereinto and to send the loaded treatment solution, and wherein the control unit is configured to control suction timing of each of the plurality of pumps so that at least one of the plurality of pumps becomes a state capable of sending the treatment solution to the plurality of solution treatment apparatuses at all times.
Abstract:
In one embodiment, a coating and developing apparatus includes a processing block having two early-stage coating unit blocks, two later-stage coating unit blocks and two developing unit blocks, each unit blocks being vertically stacked on each other, The apparatus has at least two operation modes M1 and M2 adapted for abnormality. In mode M1 the processing module that processed the abnormal substrate in the developing unit blocks is identified, and subsequent substrates are transported to the processing module or modules, of the same type as the identified processing module, other than the identified processing module. In mode M2, the developing unit block that processed the abnormal substrate is identified, and subsequent substrates are transported to the developing unit block other than the identified developing unit block.
Abstract:
In one embodiment, a coating and developing apparatus is provided with transfer units, provided between a stack of early-stage processing unit blocks and a stack of later-stage processing unit blocks to transfer a substrate between the transport mechanisms of laterally-adjacent unit blocks, and a vertically-movable auxiliary transfer mechanism for transporting a substrate between the transfer units. A stack of first developing unit blocks is stacked on the stack of early-stage processing unit blocks, and a stack of second developing unit blocks is stacked on the stack of later-stage processing unit blocks.
Abstract:
A substrate processing apparatus includes; a carrier block; a first processing block including first lower and upper processing blocks to deliver a substrate to and from the carrier block; a second processing block including second lower and upper processing blocks provided adjacent to the first lower and upper processing blocks; a relay block including a lifting and transferring mechanism that delivers the substrate between the second lower and upper processing blocks; a controller that controls an operation of each main transfer mechanism such that one of upper and lower processing blocks forms an outward path through which the substrate is transferred from the carrier block to the relay block and the other forms a return path through which the substrate is transferred from the relay block to the carrier block; and a bypass transfer mechanism provided for each of the first and second processing blocks.
Abstract:
A substrate transfer device includes a substrate holder and a base to which the substrate holder is movably attached. The substrate holder includes first and second suction holes provided to be open in a placing surface, first and second protrusions disposed respectively in the first and second suction holes, and first and second supports provided respectively in the vicinity of the first and second suction holes so as to protrude upward from the placing surface. The first protrusion is pressed by a first elastic member toward an upward direction to protrude from the first suction hole such that the first protrusion blocks the first suction hole, and the second protrusion is pressed by a second elastic member toward an upward direction to protrude from the second suction hole such that the second protrusion blocks the second suction hole.
Abstract:
An interface station of a coating and developing treatment system has: a cleaning unit cleaning at least a rear surface of a wafer before the wafer is transferred into an exposure apparatus; an inspection unit inspecting the rear surface of the cleaned wafer whether the wafer is exposable, before it is transferred into the exposure apparatus; wafer transfer mechanisms including arms transferring the wafer between the units and a wafer transfer control part controlling operations of the wafer transfer mechanisms. When it is determined that a state of the wafer becomes an exposable state by re-cleaning in the cleaning unit as a result of the inspection, the wafer transfer control part controls the wafer transfer mechanisms to transfer the wafer again to the cleaning unit.