摘要:
A ZnO based semiconductor device includes: a lamination structure including a first semiconductor layer containing ZnO based semiconductor of a first conductivity type and a second semiconductor layer containing ZnO based semiconductor of a second conductivity type opposite to the first conductivity type, formed above the first semiconductor layer and forming a pn junction together with the first semiconductor layer; and a Zn—Si—O layer containing compound of Zn, Si and O and covering a surface exposing the pn junction of the lamination structure.
摘要:
A ZnO layer is provided which can obtain emission at a wavelength longer than blue (e.g., 420 nm) and has a novel structure. A transition energy narrower by 0.6 eV or larger than a band gap of ZnO can be obtained by doping S into a ZnO layer.
摘要:
A ZnO-containing semiconductor layer contains Se added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or a semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
摘要:
A ZnO-containing semiconductor layer contains Se or S added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
摘要:
A ZnO-containing semiconductor layer contains Se added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or a semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
摘要:
A ZnO-containing semiconductor layer contains Se or S added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
摘要:
A ZnO based semiconductor light emitting device includes: a first semiconductor layer containing ZnO1-x1Sx1; a second semiconductor layer formed above the first semiconductor layer and containing ZnO1-x2Sx2; and a third semiconductor layer formed above the second semiconductor layer and containing ZnO1-x3Sx3, wherein an S composition x1 of the first semiconductor layer, an S composition x2 of the second semiconductor layer and an S composition x3 of the third semiconductor layer are so selected that an energy of the second semiconductor layer at the lower end of a conduction band becomes lower than both energies of the first and third semiconductor layers at the lower end of the conduction bands, and that an energy of the second semiconductor layer at the upper end of a valence band becomes higher than both energies of the first and third semiconductor layers at the upper end of the valence bands.
摘要:
A method includes (a) preparing a substrate, and (b) growing a ZnO-containing compound semiconductor layer above the substrate by supplying at the same time at least Zn and O as source gases and S as a surfactant.
摘要:
A ZnO-containing semiconductor layer, doped with Se, has an emission peak wavelength in visual light and has a band gap equivalent to a band gap of ZnO.
摘要:
A ZnO based semiconductor light emitting device includes: a first semiconductor layer containing ZnO1-x1Sx1; a second semiconductor layer formed above the first semiconductor layer and containing ZnO1-x2Sx2; and a third semiconductor layer formed above the second semiconductor layer and containing ZnO1-x3Sx3, wherein an S composition x1 of the first semiconductor layer, an S composition x2 of the second semiconductor layer and an S composition x3 of the third semiconductor layer are so selected that an energy of the second semiconductor layer at the lower end of a conduction band becomes lower than both energies of the first and third semiconductor layers at the lower end of the conduction bands, and that an energy of the second semiconductor layer at the upper end of a valence band becomes higher than both energies of the first and third semiconductor layers at the upper end of the valence bands.