摘要:
This invention relates to a process for forming a metal interconnect comprising the steps of forming a concave in an insulating film formed on a substrate, forming a copper-containing metal film over the whole surface such that the concave is filled with the metal and then polishing the copper-containing metal film by chemical mechanical polishing, characterized in that the polishing step is conducted using a chemical mechanical polishing slurry comprising a polishing material, an oxidizing agent and an adhesion inhibitor preventing adhesion of a polishing product to a polishing pad, while contacting the polishing pad to a polished surface with a pressure of at least 27 kPa. This invention allows us to prevent adhesion of a polishing product to a polishing pad and to form a uniform interconnect layer with an improved throughput, even when polishing a large amount of copper-containing metal during a polishing step.
摘要:
This invention relates to a process for forming a metal interconnect comprising the steps of forming a concave in an insulating film formed on a substrate, forming a barrier metal film on the insulating film, forming an interconnect metal film over the whole surface such that the concave is filled with the metal and then polishing the surface of the substrate by chemical mechanical polishing, characterized in that the polishing step comprises a first polishing step of polishing the surface such that the interconnect metal film partially remains on the surface other than the concave and a second polishing step of polishing the surface using a polishing slurry controlling a polishing-rate ratio of the interconnect metal to the barrier metal to 1 to 3 both inclusive, until the surface of the insulating film other than the concave is substantially completely exposed. According to this invention, dishing and erosion can be prevented and a reliable damascene interconnect with a small dispersion of an interconnect resistance can be formed.
摘要:
This invention provides a chemical mechanical polishing slurry for polishing a metal film formed on an insulating film with a concave on a substrate wherein the slurry contains a thickener without an ionic group with an opposite sign to a charge on a polishing material surface to 0.001 wt % or more and less than 0.05 wt % to the total amount of the slurry and has a slurry viscosity of 1 mPa·s to 5 mPa·s both inclusive. The polishing slurry may be used in CMP to form a reliable damascene electric connection with excellent electric properties at a higher polishing rate, i.e., a higher throughput while preventing dishing or erosion.
摘要:
By using a polishing slurry which comprises, at least, a polishing grain, an oxidizing agent and a higher-mono-primary amine, it is possible to suppress dishing and erosion liable to be produced in chemical mechanical polishing (CMP) for a copper-based metal film when forming a buried interconnection of a copper-based metal on a barrier metal film of a tantalum-based metal.
摘要:
By using a polishing slurry which contains, at least, a polishing grain, an oxidizing agent and a basic amino acid compound, it is possible to suppress dishing and erosion liable to be produced in chemical mechanical polishing (CMP) for a copper-based metal film when forming a buried interconnection of a copper-based metal on a barrier metal film of a tantalum-based metal.
摘要:
This invention provides a chemical mechanical polishing slurry for polishing a copper-based metal film formed on an insulating film comprising a concave on a substrate, comprising a polishing material, an oxidizing agent and water as well as a benzotriazole compound and a triazole compound. The polishing slurry may be used in CMP to form a reliable damascene electric connection with excellent electric properties at a higher polishing rate, i.e., a higher throughput while preventing dishing.
摘要:
A post-CMP cleaning process of a copper layer is to be performed as follows. An alkaline aqueous solution, a polycarboxylic acid, BTA, and an alkaline aqueous solution are sequentially brought into contact with a primary surface of a silicon substrate over which the copper layer is provided.
摘要:
First, in a primary polishing step, a substrate is brought into close contact with a first pad including abrasives and made of a hard material, and the first pad is rotated while a first solution containing no abrasive is supplied onto the first pad to polish a surface of the substrate. In the primary polishing step, since the first solution contains no abrasive and the first pad is hard, polishing is performed with high flatness and extremely less dishing and erosion. Next, in a secondary polishing step, the substrate is brought into close contact with a second pad including no abrasive and made of a soft material, and the second pad is rotated while a second solution containing abrasives is supplied onto the second pad to polish the surface of the substrate. In the secondary polishing step, since the second solution contains the abrasives and the second pad is soft, scratches produced in the primary polishing step are reduced.
摘要:
An abrasive pad and a polishing method advantageously applicable to wafers for the production of semiconductor devices are disclosed. The abrasive pad includes a pad body capable of spinning for polishing a wafer pressed against the pad body. A number of grooves are formed in the surface of the pad body, so that slurry can flow therein. The grooves intersect each other to form a number of projections aligning in the horizontal and vertical directions and each having a polygonal shape, as seen in a plan view. One of the projections faces each groove in the lengthwise direction of the groove. This configuration enhances uniform polishing and high speed, high pressure polishing while promoting efficient use of the slurry.
摘要:
In forming a single phase CrN film suitable for a barrier film of the copper wiring, the manufacturing conditions for forming the barrier film are determined in advance. The semiconductor device is manufactured using the predetermined conditions. Single phase CrN film is preferred as a barrier film for preventing diffusion and oxidation of the Cu wiring pattern. For example, a CrN film is formed by sputtering under specific conditions in a mixing gas atmosphere of nitrogen/argon gas. The preferred barrier film for the Cu wiring pattern has a narrow nonstoiciometric composition range of Cr:N=1:0.97-0993.