摘要:
The method for producing a silicon epitaxial wafer according to the present invention has: a growth step G at which an epitaxial layer is grown on a silicon single crystal substrate; a first polishing step E at which, before the growth step G, both main surfaces of the silicon single crystal substrate are subjected to rough polishing simultaneously; and a second polishing step H at which, after the growth step G, the both main surfaces of the silicon single crystal substrate are subjected to finish polishing simultaneously.
摘要:
A method of manufacturing a solar cell by providing a first substrate; depositing on the first substrate a sequence of layers of semiconductor material forming a solar cell including a top subcell and a bottom subcell; forming a metal back contact over the bottom subcell; forming a group of discrete, spaced-apart first bonding elements over the surface of the back metal contact; attaching a surrogate substrate on top of the back metal contact using the bonding elements; and removing the first substrate to expose the surface of the top subcell.
摘要:
Methods of forming microelectronic device wafers include fabricating a plurality of semiconductor dies at an active side of a semiconductor wafer, depositing a mask on the semiconductor wafer, removing a central portion of the mask and the semiconductor wafer, and etching. The semiconductor wafer has an outer perimeter edge and a backside that is spaced from the active side by a first thickness. The mask is deposited on the backside of the semiconductor wafer and has a face that is spaced from the backside by a mask thickness. The thinned portion has a thinned surface that is spaced from the active side by a second thickness that is less than the first thickness, and the thinned surface is etched.
摘要:
A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 μm-10 μm thick edge process-induced degradation layer.
摘要:
Methods of forming microelectronic device wafers include fabricating a plurality of semiconductor dies at an active side of a semiconductor wafer, depositing a mask on the semiconductor wafer, removing a central portion of the mask and the semiconductor wafer, and etching. The semiconductor wafer has an outer perimeter edge and a backside that is spaced from the active side by a first thickness. The mask is deposited on the backside of the semiconductor wafer and has a face that is spaced from the backside by a mask thickness. The thinned portion has a thinned surface that is spaced from the active side by a second thickness that is less than the first thickness, and the thinned surface is etched.
摘要:
Epitaxially coated silicon wafers, are coated individually in an epitaxy reactor by placing a wafer on a susceptor, pretreating under a hydrogen atmosphere, in and then with addition of an etching medium, and coating epitaxially on a polished front side, wherein an etching treatment of the susceptor is effected after a specific number of epitaxial coatings, and the susceptor is then hydrophilized. Silicon wafer produced thereby have a maximum local flatness value SFQRmax of 0.01 μm to 0.035 μm relative to at least 99% of the partial regions of an area grid of measurement windows having a size of 26×8 mm2 on the front side of the silicon wafer with an edge exclusion of 2 mm.
摘要:
The present invention provides system and apparatus for use in processing wafers. The new system and apparatus allows for the production of thinner wafers that at same time remain strong. As a result, the wafers produced by the present process are less susceptible to breaking. The unique system also offers an improved structure for handling thinned wafers and reduces the number of processing steps. This results in improved yields and improved process efficiency.
摘要:
A method of grinding a molded semiconductor package to a desired ultra thin thickness without damage to the package is disclosed. Prior to grinding a molded package to a desired package thickness, the package may be protected from excessive mechanical stress generated during grinding by applying a protective tape to enclose interconnects formed on the package. This way, the protective tape provides support to the semiconductor package during package grinding involving the mold material as well as the die. In the post-grind package, the grinded die surface may be exposed and substantially flush with the mold material. The protective tape may then be removed to prepare the post-grind package for connection with an external device or PCB.
摘要:
In a wafer processing method, rough grinding using a first grinding stone is divided into first and second steps. In the first step, a wafer is processed into a concave shape at a first transfer rate with a reinforcing rib area slightly left. Thereafter, as primary rough grinding in the second step, the grinding stone is positioned slightly on the inner circumferential side and the wafer is further processed into the concave portion at a second transfer rate faster than the first transfer rate. Since the first transfer rate is suppressed to a rate not to cause a burst chipping, a burst chipping resulting from the second step fast in the processing rate to ensure productivity will occur at the stepped edge portion on the inside of the reinforcing rib area surface. Thus, the flatness of the reinforcing rib area can be ensured.
摘要:
Fracture-resistant gallium nitride substrate, and methods of testing for and manufacturing such substrates are made available. A gallium nitride substrate (10) is provided with a front side (12) polished to a mirrorlike finish, a back side (14) on the substrate side that is the opposite of the front side (12). A damaged layer (16) whose thickness d is 30 μm or less is formed on the back side (14). Given that the strength of the front side (12) is I1 and the strength of the back side (14) is I2, then the ratio I2/I1 is 0.46 or more.