摘要:
A shaping mold for the production of ultra-thin shaped rubber articles, has a main body which is dipped into a latex liquid so as to make the latex adhered to the surface of the main body. The adhered latex is heat-dried to form an ultra-thin shaped rubber article over the surface. The mold is such that at least the surface of its main body is made of an amorphous carbon and that its bottom part is fitted with electrifying electrodes and has therebetween a heating area to be heated by resistance heating due to its electrification. The same shaping mold can be used from its dipping step through the inspecting step of inspecting the shaped article as adhered to the surface of the mold. In the heat-drying step of the method, the shaped article as adhered to the surface of the shaping mold is heated and dried from the inside of the mold with preventing as much as possible formation of pin holes in the shaped article.
摘要:
A shaping mold for the production of ultra-thin shaped rubber articles, has a main body which is dipped into a latex liquid so as to make the latex adhered to the surface of the main body. The adhered latex is heat-dried to form an ultra-thin shaped rubber article over the surface. The mold is such that at least the surface of its main body is made of an amorphous carbon and that its bottom part is fitted with electrifying electrodes and has therebetween a heating area to be heated by resistance heating due to its electrification. The same shaping mold from its dipping step through the inspecting step of inspecting the shaped article as adhered to the surface of the mold. In the heat-drying step of the method, the shaped article as adhered to the surface of the shaping mold is heated and dried from the inside of the mold with preventing as much as possible formation of pin holes in the shaped article.
摘要:
An electrostatic chucking device having a laminated structure formed by sequentially laminating a first insulation layer, an electrode layer, and a second insulation layer on a metal substrate. The first and second insulation layers are formed from polyimide films. At least one adhesion layer is provided between the metal substrate and the first insulation layer, and, preferably, between the first insulation layer and the electrode layer, and between the electrode layer and the second insulation layer. The adhesion layer is a thermoplastic polyimide-based adhesive film having a film thickness of 5 to 50 &mgr;m. The electrostatic chucking device may be manufactured by a low-temperature compression bonding process under pressure at a temperature of 100 to 250° C. between the metal substrate and the first insulation layer, between the first insulation layer and the electrode layer, and between the electrode layer and the second insulation layer using thermoplastic polyimide-based adhesion films.
摘要:
Disclosed is a wafer stage allowing a plasma process under a heating condition at a high temperature, particularly, 400.degree. C. or more using the improved electrostatically chucking technology with the increased temperature-controllability. The wafer stage includes an electrostatic chuck and a temperature adjusting jacket disposed under said electrostatic chuck. The electrostatic chuck includes: a dielectric member made from an insulating material; an electrode formed of a brazing layer, which is disposed on the underside of said dielectric member for fixing said dielectric member; an aluminum nitride plate disposed on the underside of said electrode, to which said dielectric member is fixed through said electrode; a heater, disposed on the underside of said aluminum nitride plate, for heating said dielectric member; and a metal plate disposed on the underside of said aluminum nitride plate and also at least on a top or bottom side of said heater. The temperature adjusting jacket is made from a composite aluminum based material prepared by treatment of aluminum or an aluminum alloy with inorganic fibers under a high pressure, and includes a temperature adjusting means.
摘要:
Provided is a substrate suction apparatus which has a vacuum suction mechanism and an electrostatic attraction mechanism, and improves planarity of a subject to be processed by improving uniformity in vacuum suction power. A method for manufacturing such substrate suction apparatus is also provided. A substrate suction apparatus (1) is provided with a base board (2), a dielectric body (3), an electrostatic attraction mechanism (4) and a vacuum suction mechanism (5). Specifically, the dielectric body (3) is composed of a downmost dielectric layer (31), an intermediate dielectric layer (32) and a topmost dielectric layer (33). The electrostatic attraction mechanism (4) is composed of attraction electrodes (41, 42) and a direct current power supply. The vacuum suction mechanism (5) is composed of a groove (51), a suction channel (52), a porous dielectric body (3) and the porous attraction electrodes (41, 42). The downmost dielectric layer (31), the intermediate dielectric layer (32) and the topmost dielectric layer (33) are formed by spraying ceramic particles, and the attraction electrodes (41, 42) are formed by spraying tungsten particles. The average pore diameter and porosity of the downmost dielectric layer (31) are set maximum, and those of the topmost dielectric layer (33) are set minimum.
摘要:
An electrostatic chucking device having a laminated structure formed by sequentially laminating a first insulation layer, an electrode layer, and a second insulation layer on a metal substrate. The first and second insulation layers are formed from polyimide films. At least one adhesion layer is provided between the metal substrate and the first insulation layer, and is a thermoplastic polyimide-based adhesive film having a film thickness of 5 to 50 μm.
摘要:
Provided is a substrate suction apparatus which has a vacuum suction mechanism and an electrostatic attraction mechanism, and improves planarity of a subject to be processed by improving uniformity in vacuum suction power. A method for manufacturing such substrate suction apparatus is also provided. A substrate suction apparatus (1) is provided with a base board (2), a dielectric body (3), an electrostatic attraction mechanism (4) and a vacuum suction mechanism (5). Specifically, the dielectric body (3) is composed of a downmost dielectric layer (31), an intermediate dielectric layer (32) and a topmost dielectric layer (33). The electrostatic attraction mechanism (4) is composed of attraction electrodes (41, 42) and a direct current power supply. The vacuum suction mechanism (5) is composed of a groove (51), a suction channel (52), a porous dielectric body (3) and the porous attraction electrodes (41, 42). The downmost dielectric layer (31), the intermediate dielectric layer (32) and the topmost dielectric layer (33) are formed by spraying ceramic particles, and the attraction electrodes (41, 42) are formed by spraying tungsten particles. The average pore diameter and porosity of the downmost dielectric layer (31) are set maximum, and those of the topmost dielectric layer (33) are set minimum.
摘要:
Provided are an apparatus for and a method of removing foreign materials from a substrate which reliably remove the foreign materials, eliminate a chance of redeposition of the foreign materials, and are applicable even to large-size substrates. The apparatus for removing foreign materials includes electrostatic chucks (2, 3) forming a substrate chucking surface (4) to which the substrate (1) is attracted; a resin sheet supplying means (9) for supplying a resin sheet (5) to the substrate chucking surface (4); resin sheet collecting means (13) for collecting the supplied resin sheet (5); and a substrate transfer means for transferring the substrate (1). The substrate (1) supplied to the electrostatic chucks (2, 3) by the substrate transfer means is attracted to the substrate chucking surface (4) through the resin sheet (5), and a foreign material (22) deposited on a side of the substrate chucking surface (4) of the substrate (1) is transferred onto the resin sheet (5) and removed.
摘要:
Provided are an apparatus for and a method of removing foreign materials from a substrate which reliably remove the foreign materials, eliminate a chance of redeposition of the foreign materials, and are applicable even to large-size substrates. The apparatus for removing foreign materials includes electrostatic chucks (2, 3) forming a substrate chucking surface (4) to which the substrate (1) is attracted; a resin sheet supplying means (9) for supplying a resin sheet (5) to the substrate chucking surface (4); resin sheet collecting means (13) for collecting the supplied resin sheet (5); and a substrate transfer means for transferring the substrate (1). The substrate (1) supplied to the electrostatic chucks (2, 3) by the substrate transfer means is attracted to the substrate chucking surface (4) through the resin sheet (5), and a foreign material (22) deposited on a side of the substrate chucking surface (4) of the substrate (1) is transferred onto the resin sheet (5) and removed.
摘要:
To provide an aluminium composite structure having a highly airtight channel therein, including: a core material having a concave groove on a surface; a covering material made up of aluminium or aluminium alloy which covers the surface of the core material other than an inner surface of the concave groove; and a lid which is firmly fixed to the covering material to close an opening of the concave groove of the core material, forms a channel for running a heat exchange medium therein, and is made up of the aluminium or aluminium alloy, and a method of manufacturing the same.