摘要:
A process for making DNA libraries in filamentous fungal cells using a novel cloned gene involved in the mismatch repair system of filamentous fungal cells.
摘要:
A DNA construct comprising the following sequence: 5'-P-SP-(LP).sub.n -PS-HP-3' wherein P is a promoter sequence, SP is a DNA sequence encoding the yeast aspartic protease 3 (YAP3) signal peptide, LP is a DNA sequence encoding a leader peptide, n is 0 or 1, PS is a DNA sequence encoding a peptide defining a yeast processing site, and HP is a DNA sequence encoding a polypeptide which is heterologous to a selected host organism. The YAP3 signal peptide provides efficient secretion of heterologous proteins in yeast.
摘要:
The present invention relates to a method for improving the properties of a cellulolytic enzyme by amino acid substitution, deletion or insertion, the method comprising the steps of: a. constructing a multiple alignment of at least two amino acid sequences known to have three-dimensional structures similar to endoglucanase V (EGV) from Humicola insolens known from Protein Data Bank entry 4ENG; b. constructing a homology-built three-dimensional structure of the cellulolytic enzyme based on the structure of the EGV; c. identifying amino acid residue positions present in a distance from the substrate binding cleft of not more than 5 Å; d. identifying surface-exposed amino acid residues of the enzyme; e. identifying all charged or potentially charged amino acid residue positions of the enzyme; f. choosing one or more positions wherein the amino acid residue is to be substituted, deleted or where an insertion is to be provided; and g. carrying out the substitution, deletion or insertion by using conventional protein engineering techniques. Also described are cellulase variants obtained by this method.
摘要:
The present invention relates to a method for improving the properties of a cellulolytic enzyme by amino acid substitution, deletion or insertion, the method comprising the steps of: a. constructing a multiple alignment of at least two amino acid sequences known to have three-dimensional structures similar to endoglucanase V (EGV) from Humicola insolens known from Protein Data Bank entry 4ENG; b. constructing a homology-built three-dimensional structure of the cellulolytic enzyme based on the structure of the EGV; c. identifying amino acid residue positions present in a distance from the substrate binding cleft of not more than 5 Å; d. identifying surface-exposed amino acid residues of the enzyme; e. identifying all charged or potentially charged amino acid residue positions of the enzyme; f. choosing one or more positions wherein the amino acid residue is to be substituted, deleted or where an insertion is to be provided; and g. carrying out the substitution, deletion or insertion by using conventional protein engineering techniques. Also described are cellulase variants obtained by this method.
摘要:
The present invention relates to cellulase variants, i.e., endo-beta-1,4-glucanase variants, derived from a parental cellulase, i.e., endo-beta-1,4-glucanase, by substitution, insertion and/or deletion, which variant has a catalytic core domain, in which the variant at position 5 holds an alanine residue (A), a serine residue (S), or a threonine residue (T); at position 8 holds a phenylalanine residue (F), or a tyrosine residue (Y); at position 9 holds a phenylalanine residue (F), a tryptophan residue (W), or a tyrosine residue (Y); at position 10 holds an aspartic acid residue (D); and at position 121 holds an aspartic acid residue (D).
摘要:
Synthetic leaders for effective secretion of proteins in yeast are provided. Also provided are replicable yeast vectors containing a DNA-sequence encoding the synthetic leader positioned upstream to a DNA-sequence encoding the desired product and operably connected with promoter and signal sequences. There are also provided yeast strains transformed with such vectors and a method for producing proteins by means of the transformed yeast strains.
摘要:
The present invention relates to a method for improving the properties of a cellulolytic enzyme by amino acid substitution, deletion or insertion, the method comprising the steps of: a. constructing a multiple alignment of at least two amino acid sequences known to have three-dimensional structures similar to endoglucanase V (EGV) from Humicola insolens known from Protein Data Bank entry 4ENG; b. constructing a homology-built three-dimensional structure of the cellulolytic enzyme based on the structure of the EGV; c. identifying amino acid residue positions present in a distance from the substrate binding cleft of not more than 5 Å; d. identifying surface-exposed amino acid residues of the enzyme; e. identifying all charged or potentially charged amino acid residue positions of the enzyme; f. choosing one or more positions wherein the amino acid residue is to be substituted, deleted or where an insertion is to be provided; and g. carrying out the substitution, deletion or insertion by using conventional protein engineering techniques. Also described are cellulase variants obtained by this method.
摘要:
The present invention relates to a method for improving the properties of a cellulolytic enzyme by amino acid substitution, deletion or insertion, the method comprising the steps of: a. constructing a multiple alignment of at least two amino acid sequences known to have three-dimensional structures similar to endoglucanase V (EGV) from Humicola insolens known from Protein Data Bank entry 4ENG; b. constructing a homology-built three-dimensional structure of the cellulolytic enzyme based on the structure of the EGV; c. identifying amino acid residue positions present in a distance from the substrate binding cleft of not more than 5 Å; d. identifying surface-exposed amino acid residues of the enzyme; e. identifying all charged or potentially charged amino acid residue positions of the enzyme; f. choosing one or more positions wherein the amino acid residue is to be substituted, deleted or where an insertion is to be provided; and g. carrying out the substitution, deletion or insertion by using conventional protein engineering techniques. Also described are cellulase variants obtained by this method.
摘要:
A maltogenic amylase enzyme with improved thermostability, which can be produced by cultivating Bacillus strain NCIB 11837 belonging to the Bacillus stearothermophilus complex, is made by cultivation of a host microorganism transformed with the gene coding for the maltogenic amylase enzyme.