摘要:
A metal separator 1 for a fuel cell according to the invention is a metal separator for a fuel cell manufactured by using a metal substrate 2 with a flat surface, or with concave gas flow paths formed on at least a part of the surface. The metal separator 1 includes an acid-resistant metal film 3 formed over the surface of the metal substrate 2, and containing one or more kinds of non-noble metals selected from the group comprised of Zr, Nb, and Ta, and a conductive alloy film 4 formed over the acid-resistant metal film 3, and containing one or more kinds of noble metals selected from the group comprised of Au and Pt, and one or more kinds of non-noble metals selected from the group comprised of Zr, Nb, and Ta. A method for manufacturing the metal separator for a fuel cell according to the invention includes a step S1 of depositing an acid-resistant metal film, and a step S2 of depositing a conductive alloy film. With this structure, the invention provides the metal separator for a fuel cell with an excellent acid resistance and a low contact resistance, and a manufacturing method thereof.
摘要:
The present invention concerns an alloy film for a metal separator for a fuel cell characterized by containing at least one noble metal element selected from Au and Pt and at least one non-noble metal element selected from the group consisting of Ti, Zr, Nb, Hf, and Ta, at a content ratio of noble metal element/non-noble metal element of 35/65 to 95/5, and having a film thickness of 2 nm or more. The present invention also relates to a manufacturing method of an alloy film for the metal separator for the fuel cell and a target material for sputtering, as well as the metal separator and the fuel sell. The alloy film for the metal separator for the fuel cell according to the invention is excellent in the corrosion resistance, has low contact resistance, can maintain the low contact resistance for a long time even in a corrosive environment, and is excellent further in the productivity.
摘要:
A metal separator 1 for a fuel cell according to the invention is a metal separator for a fuel cell manufactured by using a metal substrate 2 with a flat surface, or with concave gas flow paths formed on at least a part of the surface. The metal separator 1 includes an acid-resistant metal film 3 formed over the surface of the metal substrate 2, and containing one or more kinds of non-noble metals selected from the group comprised of Zr, Nb, and Ta, and a conductive alloy film 4 formed over the acid-resistant metal film 3, and containing one or more kinds of noble metals selected from the group comprised of Au and Pt, and one or more kinds of non-noble metals selected from the group comprised of Zr, Nb, and Ta. A method for manufacturing the metal separator for a fuel cell according to the invention includes a step S1 of depositing an acid-resistant metal film, and a step S2 of depositing a conductive alloy film. With this structure, the invention provides the metal separator for a fuel cell with an excellent acid resistance and a low contact resistance, and a manufacturing method thereof.
摘要:
The present invention concerns an alloy film for a metal separator for a fuel cell characterized by containing at least one noble metal element selected from Au and Pt and at least one non-noble metal element selected from the group consisting of Ti, Zr, Nb, Hf, and Ta, at a content ratio of noble metal element/non-noble metal element of 35/65 to 95/5, and having a film thickness of 2 nm or more. The present invention also relates to a manufacturing method of an alloy film for the metal separator for the fuel cell and a target material for sputtering, as well as the metal separator and the fuel sell. The alloy film for the metal separator for the fuel cell according to the invention is excellent in the corrosion resistance, has low contact resistance, can maintain the low contact resistance for a long time even in a corrosive environment, and is excellent further in the productivity.
摘要:
Provided is a sliding member having slidability and abrasion resistance both at satisfactory levels. This sliding member has a sliding surface including a base and a filling part. The base includes a first material and bears regularly arranged concavities. The filling part includes a second material and is arranged in the sliding surface to fill the concavities. The first material includes one selected from the group consisting of a metallic material, a ceramic material, and a carbonaceous material. The second material includes at least one selected from the group consisting of a metallic material, a ceramic material, and a carbonaceous material. The first and second materials differ from each other in at least one of frictional coefficient and hardness. The base and the filling part are substantially flush with each other in the sliding surface.
摘要:
It is an object to provide a contact probe pin for a semiconductor test apparatus, including an amorphous carbon type conductive film formed on the probe pin base material surface. The conductive film is excellent in tin adhesion resistance of preventing tin which is the main component of solder from adhering to the contact part of the probe pin during contact between the probe pin and solder. The contact probe pin for a semiconductor test apparatus, includes an amorphous carbon type conductive film formed on the conductive base material surface. The amorphous carbon type conductive film has an outer surface with a surface roughness (Ra) of 6.0 nm or less, a root square slope (RΔq) of 0.28 or less, and a mean value (R) of curvature radii of concave part tips of the surface form of 180 nm or more, in a 4-μm2 scan range by an atomic force microscope.
摘要:
An external storage device includes a media control section (10), a monitoring section (20), an interface section (30) and a power control section (40). The media control section (10) drives a recording media and performs data access to the recording media. The monitoring section (20) monitors whether the data access by the media control section (10) can be performed or not. The interface section (30) performs communication with a host device. When the monitoring section (20) detects that the data access can not be performed, the power control section (40) limits power supply to the interface section (30). When the monitoring section (20) detects that the data access can be performed, the power control section (40) re-starts the power supply.
摘要:
A hard coating combining excellent mold releasability with respect to glass with excellent durability at high temperature environment of 600° C. or more, and a glass molding die having the hard coating are provided. A glass molding die has a hard coating formed on a molding surface of a base. The hard coating includes one or two of W and V, and B, C and N; wherein when a composition of the coating is expressed as Wa1Va2BbCcNd, 0.1≦a1+a2≦0.5, 0.05≦b≦0.5, 0.02≦c≦0.15, 0.05≦d≦0.5, and a1+a2+b+c+d=1 are given. The hard coating can be formed on the molding surface of the base via an intermediate layer including an amorphous CrSiN film.
摘要翻译:提供了在600℃以上的高温环境下具有优异的耐玻璃脱模性的硬质涂层,以及具有硬涂层的玻璃成形模具。 玻璃模具具有形成在基底的模制表面上的硬涂层。 硬涂层包括W和V中的一种或两种,B,C和N; 其中当涂层的组成被表示为Wa1Va2BbCcNd时,0.1 <= a1 + a2 <= 0.5,0.05 <= b <= 0.5,0.02 <= c <0.15,0.05 <= d <= 0.5,a1 + a2 给出+ b + c + d = 1。 可以通过包括非晶CrSiN膜的中间层在基底的模制表面上形成硬涂层。
摘要:
Disclosed are a protein encoded by a gene having a nucleotide sequence represented by any of SEQ ID NOs: 1 to 65 or a fragment thereof, an antibody recognizing the protein or antigen-binding fragment thereof, and a polynucleotide having a sequence comprising at least 12 consecutive nucleotides of a nucleotide sequence represented by any of SEQ ID NOs: 1 to 65 or a nucleotide sequence complementary thereto. The gene and the protein of the invention is useful for diagnosing and treating cancer.
摘要:
The multi-initiator control unit for performing packet-unit communication with each of a plurality of devices connected via a transmission line includes: a packet filter for analyzing a received packet and outputting the results; a plurality of command control circuits each for controlling a command processing sequence performed with the corresponding device; a multi-control circuit for giving sequence execution permission to one of the plurality of command control circuits; and a packet processing circuit for generating a packet containing information output by the permission-given command control circuit and outputting the packet for transmission, and also outputting a received packet according to the analysis results output by the packet filter.