摘要:
Disclosed is a method for measuring the thermal diffusivity in the thickness direction of a thin sample plate, which has the steps of forming a conductive thin layer on at least one surface of said thin sample plate to allow the thin film to function as an ac heater generating joule heat, applying an ac current modulated with a given modulation frequency to the ac heater (conductive thin layer) so as to produce ac joule-heating, generating an oscillation response corresponding to said ac joule-heating on the opposite surface of the ac heater, and measuring the phase shift between said oscillation response, and the ac joule-heating, thereby obtaining the thermal diffusivity in the thickness direction of said sample plate. Apparatus useful for the method are also disclosed.
摘要:
A simulation system (101) includes an X-ray CT device (11) that obtains a tomographic image of a porous sample, and a simulation device (14) that simulates a mercury intrusion method by processing a laminated tomographic image of the sample. The simulation device (14) includes a modeling means which processes the laminated tomographic image of the sample, and which models an internal structure of the sample, a minimum-diameter obtaining means that obtains a minimum entrance diameter when mercury enters in a pore of the sample at a predetermined pressure based on a surface energy of the sample and a pressure, and a means that simulates a liquid entering in the interior of the pore from one surface of the sample based on a diameter of the pore of the modeled sample and the minimum entrance diameter.
摘要:
A flame retardant aromatic polycarbonate resin composition comprising 100 parts by weight of an aromatic polycarbonate (A), 0.01 to 0.5 part by weight of branched metal oxide particles (branched metal oxide aggregates and/or branched metal oxide agglomerates) (B), 0.0001 to 0.2 part by weight of an alkali metal salt (C) of an organic sulfonic acid, and 0.01 to 0.5 part by weight of a fluoropolymer (D), the branched metal oxide particles (B) being dispersed in a mixture of components (A), (C) and (D), wherein at least 70% of the branched metal oxide particles (B) have a diameter within the range of from 10 to 200 nm.
摘要:
A heater body has a total length between 0.8 and 1.2 m, the heater body and heating member are divided into two pieces from upstream side to downstream side of the heat treating apparatus in ratio of length between 1:3 and 1:1.5, the divided upstream heating member (12) is able to heat the upstream heater body (11) at a temperature higher than 370.degree. C., and the downstream heating member (22) is to heat the downstream heater body (21) at a temperature of between 200.degree. and 320.degree. C. or higher than 370.degree. C., the upstream heater body has yarn guides (15) disposed at a longitudinal pitch of at most 30 mm, and the downstream heater body has yarn guides (24) disposed at a longitudinal pitch between 80 and 120 mm.
摘要:
A process for preparing a polyamide is provided. The polyamide is prepared by effecting direct polycondensation reaction of a dicarboxylic acid component containing at least 80 mole % of adipic acid and a diamine component containing at least 70 mole % of m-xylylene diamine under an atmosphere of an inert gas and at atmospheric pressure at a controlled temperature which is higher than the melting point of the dicarboxylic acid component and which can maintain the reaction mixture in a uniformly-fluidized state throughout the reaction.
摘要:
A composite sinter of silicon nitride/boron nitride, which consists essentially of, in weight percentage, silicon nitride within the range of from 60 to 97% and boron nitride within the range of from 3 to 40%, and wherein said boron nitride is present as a dispersed phase in the network of said silicon nitride; said composite sinter of silicon nitride/boron nitride being manufactured by the steps of: kneading a silicon powder within the range of from 47.3 to 95.1 wt.% and a boron nitride powder within the range of from 4.9 to 52.7 wt. %, as raw materials, with the use of an organic solvent solution containing a dispersant and a binder; press-forming the resultant kneaded mixture to prepare a green compact; sintering said green compact in a non-oxidizing atmosphere at a temperature within the range of from 1,100.degree. to 1,300.degree. C. to prepare a sinter having a strength permitting machining; machining said sinter into prescribed dimensions; and sintering again the resultant machined sinter in a nitrogen atmosphere at a temperature within the range of from 1,250.degree. to 1,450.degree. C. to nitrify the same, thereby improving strength and thermal shock resistance of said sinter.
摘要:
A glass fiber-reinforced polyamide resin molding material, comprising a polyamide resin obtained by the condensation reaction of xylylene diamine with at least one member selected from straight-chain aliphatic .alpha.,.omega.-dicarboxylic acids having 6 to 12 carbon atoms and incorporated therein, glass fiber in an amount of 5 to 50% by weight based on the total weight of the polyamide resin and the glass fiber, and a shaped article obtained by molding aforesaid molding material.
摘要:
A polycarbonate thin molded article containing a resin composition, the resin composition containing: 100 parts by weight of a resin (A), the resin (A) being an aromatic polycarbonate or a resin mainly containing an aromatic polycarbonate;0.1 to 200 parts by weight of an inorganic compound (B); 0.001 to 10 parts by weight of at least one compound (C) selected from an organic acidic compound and an organic acidic compound derivative; and 0.001 to 1 part by weight of at least one metal salt (D) selected from an organic acid alkali metal salt and an organic acid alkaline earth metal salt, a part corresponding to at least 50% of the surface area of the polycarbonate thin molded article having a thickness of less than 0.7 mm, and a shrinkage ratio S1(%) in a molding flow direction of the polycarbonate thin molded article upon its being left under an atmosphere of 170° C. for 30 minutes satisfying the following formula (1): −60