摘要:
A frequency converter includes a voltage-current converter circuit which generates a positive-phase input current signal and a negative-phase input current signal, a switching circuit which switches between the positive-phase input current signal and the negative-phase input current signal according to a positive-phase local oscillator signal and a negative-phase local oscillator signal to generate a positive-phase output current signal and a negative-phase output current signal, an amplifier circuit which current-voltage converts and amplifies the positive-phase output current signal and negative-phase output current signal to generate a positive-phase output voltage signal and a negative-phase output voltage signal, and a plurality of CR circuits which are inserted at least either between the voltage-current converter circuit and the switching circuit or between the switching circuit and the amplifier circuit and each of which includes at least one capacitor through which high-frequency components pass and at least one resistance through which low-frequency noise components pass.
摘要:
An FMCW signal generator includes a frequency divider to divide the FMCW signal at a preset dividing ratio, a reference signal generator to periodically generate a reference signal at a second time interval not less than a loop time constant set for a PLL, a frequency of the reference signal being discretely swept within a range of fc±Δf (fc is a center frequency, and Δf is a frequency sweep width) at a first time interval not more than the loop time constant, a comparison unit to compare the frequency divided signal with the reference signal to generate a comparison result signal corresponding to a phase difference between the frequency divided signal and the reference signal, a loop filter to filter the comparison result signal to generate a control voltage signal, and a VCO to have an oscillation frequency thereof controlled by the control voltage signal.
摘要:
Disclosed is a frequency converter including: a passive type analog multiplier configured to output a multiplication result in a current; a buffer outputting a buffering current by buffering the current of the multiplication result; and a current-voltage converter current-voltage converting the buffering current. Alternately, disclosed is a frequency converter including: a passive type analog multiplier configured to output a multiplication result in a current; a buffer outputting a buffering current by buffering the current of the multiplication result; and an integrator integrating the buffering current to output a voltage.
摘要:
A frequency converter includes a first pair of transistors including first and second transistors, a second pair of transistors including third and fourth transistors, and a variable impedance circuit. The first transistor includes source terminal being connected to positive-phase input terminal, drain terminal being connected to positive-phase output terminal, and gate terminal being supplied with positive-phase local signal. The second transistor includes source terminal being connected to positive-phase input terminal, drain terminal being connected to negative-phase output terminal, and gate terminal being supplied with negative-phase local signal. The third transistor includes source terminal being connected to negative-phase input terminal, drain terminal being connected to positive-phase output terminal, and gate terminal being supplied with negative-phase local signal. The fourth transistor includes source terminal being connected to negative-phase input terminal, drain terminal being connected to negative-phase output terminal, and gate terminal being supplied with positive-phase local signal.
摘要:
There is provided a radio device including an antenna, a first impedance converting circuit, a second impedance converting circuit and a differential output unit. The antenna has a first terminal and a second terminal to receive a signal. The first impedance converting circuit and the second impedance converting circuit have a first impedance and a second impedance, respectively. The first impedance and the second impedance each are controllable. One end of the first impedance converting circuit and one end of the second impedance converting circuit are connected to the first terminal and the second terminal of the antenna, respectively. The differential output unit is connected to the other end of the first impedance converting circuit and the other end of the second impedance converting circuit through which the signal received by the antenna is input to the differential output unit, and transform the signal into a differential signal.
摘要:
A communication device according to an embodiment includes an antenna transmitting/receiving a high frequency signal, a semiconductor chip having four corners and four sides processing the high frequency signal, and a substrate on which a first wiring connected to ground, a second wiring supplying power to the semiconductor chip, a third wiring connected to a protection element or circuit of the semiconductor chip, and fourth wirings transmitting a signal from the semiconductor chip are formed by plating, and the semiconductor chip is mounted.
摘要:
According to one embodiment of the present invention, there is provided a high-frequency switching circuit including a first differential line and third line. The differential line includes a first line configured to have one end and an other end, a second line configured to have one end and an other end and a first switch configured to switch electrical connection between the one ends of the first and second lines. The differential line receives or outputs differential signals by the other ends of the first and second lines. The third line is configured to be electromagnetically coupled with the first differential line when the first switch is turned on. The first switch is arranged at a position where an electrical length from the other end of the first line and an electrical length from the other end of the second line are approximately equal.
摘要:
According to an aspect of the present invention, there is provided a Marchand balun including: a half-wavelength first line including: a first end configured to input or output the single-mode signal; a second end electrically opened; and a center; and quarter-wavelength second and third lines each including: a third end configured to input or output the differential-mode signal; and a fourth end connected to a ground, wherein a thickness of the first line at the center is thicker than those at the first and second ends, and wherein thicknesses of the second and third lines at the fourth ends are thicker than those at the third ends.
摘要:
An FMCW signal generation circuit includes: an oscillator configured to oscillate in an oscillation frequency that is variable in accordance with a control signal being input thereto and output an FMCW signal having the oscillation frequency; a phase detector configured to detect a phase of the FMCW signal; a first differentiator configured to obtain a frequency by differentiating the phase detected by the phase detector; a second differentiator configured to obtain a frequency variation rate by differentiating the frequency obtained by the first differentiator; a subtractor configured to calculate an error between a set frequency variation rate that is set at a given value and the frequency variation rate obtained by the second differentiator; and an integrator configured to generate the control signal for controlling the oscillation frequency of the oscillator by integrating the error calculated by the subtractor.
摘要:
A mixer circuit includes a voltage-to-current converter which converts a positive phase input voltage signal and a reversed phase input voltage signal input to a first input terminal and a second input terminal into a positive phase current signal and a reversed phase current signal, a switching circuit switches over the positive phase current signal and the reversed phase current signal according to a positive phase local signal and a reversed phase local signal, and generates a positive phase output current signal and a reversed phase output current signal, and an impedance element connected between the first common terminal and the second common terminal, having a relatively high impedance to a differential-mode signal between the positive phase current signal and the reversed phase current signal, and having a relatively low impedance to a common-mode signal between the positive phase current signal and the reversed phase current signal.