摘要:
A component for a downhole tool includes a rotor and a hardfacing precursor. The hardfacing precursor includes a polymeric material, hard particles, and a metal. A hydraulic drilling motor includes a stator, a rotor, and a sintered hardfacing material on an outer surface of the rotor or an inner surface of the stator. Methods of applying hardfacing to surfaces include forming a paste of hard particles, metal matrix particles, a polymeric material, and a solvent. The solvent is removed from the paste to form a sheet, which is applied to a surface and heated. A component for a downhole tool includes a first hardfacing material, a second hardfacing material over the first hardfacing material and defining a plurality of pores, and a metal disposed within at least some of the pores. The metal has a melting point lower than a melting point of the second hardfacing material.
摘要:
A method of hardfacing a bit using a hardfacing sheet. The hardfacing sheet includes a hardfacing composition in a carrier material. The sheet is placed on a portion of the bit body, the sheet is heated at a designated spot using a localized heating source. At the same time, oxygen is substantially purged from the zone adjacent the designated spot. The heat debinds the carrier material from the sheet leaving the hardfacing composition. Continued heating transforms the hardfacing composition into hardfacing that is fused to the bit body.
摘要:
A component for a downhole tool includes a rotor and a hardfacing precursor. The hardfacing precursor includes a polymeric material, hard particles, and a metal. A hydraulic drilling motor includes a stator, a rotor, and a sintered hardfacing material on an outer surface of the rotor or an inner surface of the stator. Methods of applying hardfacing to surfaces include forming a paste of hard particles, metal matrix particles, a polymeric material, and a solvent. The solvent is removed from the paste to form a sheet, which is applied to a surface and heated. A component for a downhole tool includes a first hardfacing material, a second hardfacing material over the first hardfacing material and defining a plurality of pores, and a metal disposed within at least some of the pores. The metal has a melting point lower than a melting point of the second hardfacing material.
摘要:
Methods of forming and repairing earth-boring tools include providing wear-resistant material over a temporary displacement member to form a cutting element pocket in a body and a depth-of-cut control feature using the wear-resistant material. In some embodiments, the wear-resistant material may comprise a particle-matrix composite material. For example, a hardfacing material may be built up over a temporary displacement member to form or repair a cutting element pocket and provide a depth-of-cut control feature. Earth-boring tools include a depth-of-cut control feature comprising a wear-resistant material. The depth-of-cut control feature is configured to limit a depth-of-cut of a cutting element secured within a cutting element pocket partially defined by at least one surface of the depth-of-cut control feature. Intermediate structures formed during fabrication of earth-boring tools include a depth-of-cut control feature extending over a temporary displacement member.
摘要:
Methods of forming and repairing earth-boring tools include providing wear-resistant material over a temporary displacement member to form a cutting element pocket in a body and a depth-of-cut control feature using the wear-resistant material. In some embodiments, the wear-resistant material may comprise a particle-matrix composite material. For example, a hardfacing material may be built up over a temporary displacement member to form or repair a cutting element pocket and provide a depth-of-cut control feature. Earth-boring tools include a depth-of-cut control feature comprising a wear-resistant material. The depth-of-cut control feature is configured to limit a depth-of-cut of a cutting element secured within a cutting element pocket partially defined by at least one surface of the depth-of-cut control feature. Intermediate structures formed during fabrication of earth-boring tools include a depth-of-cut control feature extending over a temporary displacement member.
摘要:
A method for applying a non-magnetic, abrasive, wear-resistant hardfacing material to a surface of a drill string member includes providing a non-magnetic drill string member formed of a non-magnetic material, the drill string member having an outer surface. It also includes providing a non-magnetic hardfacing precursor material comprising a plurality of non-magnetic, sintered carbide pellets and a non-magnetic matrix material; heating a portion of the non-magnetic hardfacing precursor material to a temperature above the melting point of the matrix material to melt the matrix material. It further includes applying the molten non-magnetic matrix material and the plurality of non-magnetic, sintered carbide pellets to the exterior surface of the drill string member; and solidifying the molten non-magnetic matrix material to form a layer of a non-magnetic hardfacing material having a plurality of non-magnetic, sintered carbide pellets dispersed in the hardfacing material.
摘要:
Methods of manufacturing rotary drill bits for drilling subterranean formations include forming a plurality of boron carbide particles into a body having a shape corresponding to at least a portion of a bit body of a rotary drill bit, infiltrating the plurality of boron carbide particles with a molten aluminum or aluminum-based material, and cooling the molten aluminum or aluminum-based material to form a solid matrix material surrounding the boron carbide particles. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
摘要:
Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles dispersed throughout a matrix material. In some embodiments, the particles are at least substantially fully carburized monotungsten carbide and ditungsten carbide eutectic particles. In further embodiments, the particles are generally spherical or at least substantially spherical. Methods of forming such particles include exposing a plurality of monotungsten carbide and ditungsten carbide eutectic particles to a gas containing carbon. Methods of manufacturing such tools include providing a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles or at least substantially completely carburized monotungsten carbide and ditungsten carbide eutectic particles within a matrix material.
摘要:
Methods of manufacturing rotary drill bits for drilling subterranean formations include forming a plurality of boron carbide particles into a body having a shape corresponding to at least a portion of a bit body of a rotary drill bit, infiltrating a plurality of boron carbide particles with a molten aluminum or aluminum-based material, and cooling the molten aluminum or aluminum-based material to form a solid matrix material surrounding the boron carbide particles. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
摘要:
Methods for applying an abrasive wear-resistant material to a surface of a drill bit include providing a drill bit having a bit body formed of a material comprising one of steel material, particle-matrix composite material and cemented matrix material, mixing a plurality of −40/+80 ASTM mesh dense sintered carbide pellets in a matrix material, heating the matrix material to a temperature above the melting point of the matrix material, applying the molten matrix material and at least some of the dense sintered carbide pellets to at least a portion of an exterior surface of the bit body; and solidifying the molten matrix material.