Abstract:
Embodiments of the invention provide a pump assembly and a method for assembly the pump assembly. The pump assembly includes a stator assembly, a lower pump housing, an upper pump housing, a rotor assembly, and an isolation cup. The method includes coupling the stator assembly to the lower pump housing, overmolding an overmold material over the stator assembly and the lower pump housing, positioning the isolation cup over the overmold, and positioning the rotor assembly inside the isolation cup. The method further includes placing the upper pump housing over the rotor assembly and coupling the upper pump housing to the lower pump housing.
Abstract:
In one embodiment, an improved-customizability digital sound relaxation system having a sound card receiving port and a collectable sound card are cooperative to play prerecorded natural or other sounds by depressing one of a plurality of sound selector switches and a sound card selector switch. The new sounds of each collectable sound card customize the library of available sounds to individual taste. In another embodiment, an improved-flexibility digital sound relaxation system having at least two (2) prerecorded sounds stored at first and second memory locations of internal or external/internal memory devices may be selected and combined for concurrent and/or individual replay by depressing one of a plurality of sound selector switches and a combine switch, or by depressing one of a plurality of sound selector switches, a sound card selector switch and a combine switch. In this manner, from eighteen (18) digitally prerecorded sounds of the preferred embodiment ninety (90) individually selectable and/or combinable sounds are made available. In either embodiment, natural or other sounds may be stored in loop or sound bite format in either or both of the internal and external memories.
Abstract:
A refrigerator is provided with a fresh food compartment and a door for the fresh food compartment having an organizer with a plurality of openings formed in the door for holding individual food and beverage containers. The openings include a cradle for supporting a sidewall of each container so as to hold the container in an inclined orientation. The openings are vertically aligned adjacent the ice dispenser chute of the door.
Abstract:
Embodiments of the invention provide methods of controlling a motor, such as a servo motor. One method can include monitoring a current temperature of the motor and a power stage of the motor substantially continuously and substantially in real-time. This method can include determining optimum settings for a first time interval to remove power and the second time interval to provide power in order to deliver maximum output while remaining below the maximum rated temperature of the motor. One method can include pulsing power to the motor for a second time interval after a first time interval has elapsed and tailoring pulse shapes of the power provided to the motor for the second time interval. One method can include calculating a maximum phase current based on the rotor shaft torque for each real-time speed of the motor that correlates to the maximum allowable current draw from the power supply.
Abstract:
Embodiments of the invention provide methods of controlling a motor, such as a servo motor. One method can include monitoring a current temperature of the motor and a power stage of the motor substantially continuously and substantially in real-time. This method can include determining optimum settings for a first time interval to remove power and the second time interval to provide power in order to deliver maximum output while remaining below the maximum rated temperature of the motor. One method can include pulsing power to the motor for a second time interval after a first time interval has elapsed and tailoring pulse shapes of the power provided to the motor for the second time interval. One method can include calculating a maximum phase current based on the rotor shaft torque for each real-time speed of the motor that correlates to the maximum allowable current draw from the power supply.
Abstract:
Embodiments of the invention provide a fire-extinguishing system and method for injecting foamant into a stream of water. The system can include a flow meter determining a flow rate of the stream of water and a foam pump having an inlet coupled to a supply of foamant and an outlet coupled to the stream of water. The system includes a servo motor driving the foam pump. The servo motor includes a sensor used to determine a rotor shaft speed and/or a rotor shaft torque.
Abstract:
Embodiments of the invention provide a pump assembly and a method for assembly the pump assembly. The pump assembly includes a stator assembly, a lower pump housing, an upper pump housing, a rotor assembly, and an isolation cup. The method includes coupling the stator assembly to the lower pump housing, overmolding an overmold material over the stator assembly and the lower pump housing, positioning the isolation cup over the overmold, and positioning the rotor assembly inside the isolation cup. The method further includes placing the upper pump housing over the rotor assembly and coupling the upper pump housing to the lower pump housing.
Abstract:
Embodiments of the invention provide a fire-extinguishing system and method for injecting foamant into a stream of water. The system can include a flow meter determining a flow rate of the stream of water and a foam pump having an inlet coupled to a supply of foamant and an outlet coupled to the stream of water. The system includes a servo motor driving the foam pump. The servo motor includes a sensor used to determine a rotor shaft speed and/or a rotor shaft torque.
Abstract:
Embodiments of the invention provide a fire-extinguishing system for injecting foamant into a stream of water. The system can include a flow meter determining a flow rate of the stream of water and a foam pump having an inlet coupled to a supply of foamant and an outlet coupled to the stream of water. The system includes a servo motor driving the foam pump. The servo motor includes a sensor used to determine a rotor shaft speed and/or a rotor shaft torque. A controller can control an operating speed of the servo motor using closed-loop control depending on the flow rate and the rotor shaft speed and/or the rotor shaft torque.
Abstract:
Embodiments of the invention provide a method of operating a motor connected to a power device having a reduced current rating. The motor can include an increased torque constant and/or an increased back electromagnetic force constant in order to decrease a peak current in relation to the reduced current rating of the power device. The method can include increasing a length of time the motor can operate at the peak current without overheating. A phase angle of the motor can be advanced in order to achieve a continuous operating point with the power device having the reduced current rating.