摘要:
A method of identifying and defining forbidden pitches or forbidden pitch ranges for a lithographic exposure tool under a given set of exposure conditions is provided. In the method, a computer simulation is performed, and its results are compared to frequently used pitches to see if such frequently used pitches may yield depth-of-focus (DOF) values greater than the focus budget for the exposure tool. If so, a verification test is performed by using a test mask and actually exposing a surface with the same pattern pitches simulated. From this, actual DOF values are obtained and compared to the focus budget of the exposure tool. Any pitches having a DOF value greater than the focus budget are designated as forbidden pitches. This forbidden pitch information may be integrated into a design rule to restrict the use of such forbidden pitches under the given exposure conditions where they are likely to arise.
摘要:
A method and associated masks for carrying out a lithographic imaging process to reduce or avoid a strong interference effect in off-axis illumination, the method including providing a resist layer on a substrate; illuminating a first group of line patterns through a first mask on the resist layer; illuminating a second group of line patterns through a second mask on the resist layer, the second group of line patterns oriented nonparallel with respect to the first group of line patterns; and, developing the illuminated resist layer.
摘要:
A method of identifying and defining forbidden pitches or forbidden pitch ranges for a lithographic exposure tool under a given set of exposure conditions is provided. In the method, a computer simulation is performed, and its results are compared to frequently used pitches to see if such frequently used pitches may yield depth-of-focus (DOF) values greater than the focus budget for the exposure tool. If so, a verification test is performed by using a test mask and actually exposing a surface with the same pattern pitches simulated. From this, actual DOF values are obtained and compared to the focus budget of the exposure tool. Any pitches having a DOF value greater than the focus budget are designated as forbidden pitches. This forbidden pitch information may be integrated into a design rule to restrict the use of such forbidden pitches under the given exposure conditions where they are likely to arise.
摘要:
A method for improving the critical dimension uniformity of a patterned feature on a wafer in semiconductor and mask fabrication is provided. In one embodiment, an evaluation means for evaluating the critical dimension distribution of a plurality of circuit layouts formed on the wafer, the plurality of circuit layouts defined by a mask is provided. A logic operation is performed on the plurality of circuit layouts to extract the patterned feature. The patterned feature is compared with design rules and if there is a deviation or difference between the patterned feature and the design rules, this difference is compensated for by adjusting photolithography adjustable parameters, such as, for example, mask-making.
摘要:
A method for improving the critical dimension uniformity of a patterned feature on a wafer in semiconductor and mask fabrication is provided. In one embodiment, an evaluation means for evaluating the critical dimension distribution of a plurality of circuit layouts formed on the wafer, the plurality of circuit layouts defined by a mask is provided. A logic operation is performed on the plurality of circuit layouts to extract the patterned feature. The patterned feature is compared with design rules and if there is a deviation or difference between the patterned feature and the design rules, this difference is compensated for by adjusting photolithography adjustable parameters, such as, for example, mask-making.
摘要:
A method for splitting a pattern layout including providing the pattern layout having features, checking the pattern layout to determine the features that require splitting, coloring the features that require splitting with a first and second color, resolving coloring conflicts by decomposing the feature with the coloring conflict and coloring the decomposed feature with the first and second color, and generating a first mask with features of the first color and a second mask with features of the second color.
摘要:
A method for splitting a pattern layout including providing the pattern layout having features, checking the pattern layout to determine the features that require splitting, coloring the features that require splitting with a first and second color, resolving coloring conflicts by decomposing the feature with the coloring conflict and coloring the decomposed feature with the first and second color, and generating a first mask with features of the first color and a second mask with features of the second color.
摘要:
Disclosed is a method and a system for identifying lens aberration sensitive patterns in an integrated circuit chip. A first simulation of a layout is performed to simulate a contour without lens aberration. A second simulation is performed of the layout to simulate a contour with lens aberration. A difference of critical dimension is determined between the contours with and without lens aberration, and at least one lens aberration sensitive pattern is selected from a plurality of layouts based on the difference in critical dimension.
摘要:
Various seal ring arrangements for an immersion lithography system are disclosed. With the seal ring arrangements, the immersion lithography system can provide better sealing effect for processing the wafers on a wafer chuck.
摘要:
An immersion optical projection system for photolithography is provided. A transparent plate is located between a last lens element and the wafer during a usage of the system. The transparent plate has a lens-side surface and a wafer-side surface. The system is adapted to have a layer of lens-side fluid located between the last lens element and the lens-side surface of the transparent plate, e.g., when the last lens element is operably located over the wafer during a photolithography process. The system is also adapted to have a layer of wafer-side fluid located between the wafer-side surface of the transparent plate and the wafer, during a usage of the system. The wafer-side fluid may or may not be fluidly connected to the lens-side fluid. The wafer-side fluid may or may not differ from the lens-side fluid.