Device and method for detecting defect in main shaft of wind turbine

    公开(公告)号:US10605790B2

    公开(公告)日:2020-03-31

    申请号:US15665535

    申请日:2017-08-01

    Abstract: The present disclosure provides a device and method for detecting a defect in a main shaft of a wind turbine. The device includes: an excitation source, configured to generate an electromagnetic ultrasonic guided wave signal; a nickel strap, magnetized and disposed on an outer surface of an end of the main shaft; a coil, disposed at the nickel strap, configured to receive the electromagnetic ultrasonic guided wave signal such that the electromagnetic ultrasonic guided wave signal propagates in the main shaft, the coil and the nickel strap being configured to transform the electromagnetic ultrasonic guided wave signal propagating in the main shaft into an electrical signal by electromagnetic induction; a signal collector, configured to collect the electrical signal and transform the electrical signal into guided wave detection data and a wireless communication component, configured to transmit the guided wave detection data to a remote equipment.

    Method and device for testing defect based on ultrasonic lamb wave tomography

    公开(公告)号:US10197534B2

    公开(公告)日:2019-02-05

    申请号:US14948398

    申请日:2015-11-23

    Abstract: Disclosed are a method and a device for testing a defect based on an ultrasonic Lamb wave tomography. The method includes: partitioning an imaging area of a material to be tested into grids; exciting electromagnetic acoustic transducers for emitting to emit Lamb waves with a A0 mode in all directions, and electromagnetic acoustic transducers for receiving to receive the Lamb waves; obtaining a time-frequency analysis result and recording time-of-flights of testing waves; determining a first slowness of each grid to obtain a first defect area; establishing an extrapolation formula according to the first defect area, and iterating the extrapolation formula to trace and revise paths of the Lamb waves until a better imaging precision is obtained.

    Device and method for testing steel defect based on internal and external magnetic perturbation

    公开(公告)号:US11378548B2

    公开(公告)日:2022-07-05

    申请号:US17146703

    申请日:2021-01-12

    Abstract: A device and a method for testing a steel defect based on internal and external magnetic perturbation. The device includes: a magnetizer comprising a magnetization source and a magnet yoke, arranged on a surface of a sample, and configured to generate two types of typical magnetic field regions applied to testing based on internal and external magnetic perturbation; a double-row magnetic sensor probe, configured to collect internal and external magnetic perturbation data; a master controller, configured to perform pre-processing on the internal and external magnetic perturbation data, and store the pre-processed data; scanner wheels, configured to generate a sampling trigger pulse during scanning to enable the master controller to receive the internal and external magnetic perturbation data from the probes; and a host computer, configured to analyze the pre-processed data uploaded by the master controller to obtain a defect quantitative result.

    Method and device for detecting and evaluating defect

    公开(公告)号:US11099156B2

    公开(公告)日:2021-08-24

    申请号:US16403990

    申请日:2019-05-06

    Abstract: The present disclosure provides a method and a device for detecting and evaluating a defect with electromagnetic multi-field coupling. The method includes magnetizing a pipeline with the electromagnetic multi-field coupling; detecting a defect of the pipeline along an axial direction of the pipeline at a constant speed; collecting signals at a position of the defect to obtain magnetic leakage signals in three dimensions and an electrical impedance signal; pre-processing the collected signals; decoupling the pre-processed signals, to obtain decoupled magnetic leakage signals and a decoupled electrical impedance signal; performing impedance analysis on the decoupled electrical impedance signal, and determining a type of the defect based on a phase angle of the decoupled electrical impedance signal; and performing quantification analysis on the decoupled magnetic leakage signals and performing quantification evaluation on a size of the defect using a neural network defect quantification method.

Patent Agency Ranking