摘要:
A BIST circuit for high speed applications includes a phase difference detection circuit, a period-to-current conversion circuit having an input coupled to an output of the phase difference detection circuit and a current-to-voltage conversion circuit coupled to an output of the period-to-current conversion circuit. The phase difference detection circuit includes first NAND logic for receiving as inputs an input clock signal and a delayed version of an inverted version of the input clock signal; second NAND logic for receiving as inputs the inverted version of the input clock signal and a delayed version of the input clock signal; third NAND logic for receiving as inputs the input clock signal and the delayed version of the input clock signal; and fourth NAND logic for receiving as inputs the inverted version of the input clock signal and a delayed version of the inverted version of the input clock signal.
摘要:
The present disclosure relates to a clock generation system. The system includes a clock source, a tuning buffer, an output buffer, a duty cycle measurement circuit and an automatic calibration component. The clock source generates a clock signal. The tuning buffer is configured to generate a corrected clock signal from the clock signal according to adjustment values. The output buffer is configured to generate an output clock signal from the corrected clock signal. The duty cycle measurement circuit is configured measure a duty cycle of the output clock signal. The automatic calibration component is configured to generate the adjustment values according to the duty cycle measurement and the specification values.
摘要:
The present disclosure relates to a clock generation system. The system includes a clock source, a tuning buffer, an output buffer, a duty cycle measurement circuit and an automatic calibration component. The clock source generates a clock signal. The tuning buffer is configured to generate a corrected clock signal from the clock signal according to adjustment values. The output buffer is configured to generate an output clock signal from the corrected clock signal. The duty cycle measurement circuit is configured measure a duty cycle of the output clock signal. The automatic calibration component is configured to generate the adjustment values according to the duty cycle measurement and the specification values.
摘要:
Some aspects of the present disclosure provide for a method of accurately simulating variations in an operating parameter, due to processing variations caused by a multi-patterning exposure, by reducing the impact of layout sections having a large width and spacing. The method assigns a skew sensitive index to one or more sections of a multi-patterning layer formed with a first mask. Runlengths of the one or more sections are respectively multiplied by an assigned skew sensitive index to determine a skew variation for each of the one or more sections. The overall skew variation sum is then determined by summing the skew variation for each of the one or more sections. By separately determining the effects of processing variations (e.g., mask misalignment) for different sections of a multi-patterning layer, an accurate measurement of operating parameter variations is achieved.
摘要:
A Phase Lock Loop (PLL) with gain control is provided. The PLL has a dual-path configuration, where a first and a second VCO control voltage are generated in response to a phase or frequency difference between a PLL input signal and an output signal. The PLL comprises a dynamic voltage gain control (DVGC) unit and a voltage-to-current (V2I) unit, where the DVGC creates a baseline reference current in response to the first VCO control voltage and the V2I provides a substantially linear current in response to the second VCO control voltage. The currents from the DVGC and V2I are combined and fed into a current-controlled oscillator, which generates a PLL output frequency signal. Frequency gain of the VCO is substantially reduced, thus providing a PLL with improved tuning precision.
摘要:
A representative integrator includes an amplifier having an input and an output; a feedback loop coupled between the input and the output of the amplifier, the feedback loop comprising a compensated resistor circuit having a resistance value selected for reducing a loss factor of the integrator; and a control circuit coupled to an input of the compensated resistor circuit, the control circuit producing a control signal for controlling the compensated resistor circuit to substantially maintain the resistance value selected for reducing the loss factor of the integrator across a range of integrator temperatures.
摘要:
A representative integrator includes an amplifier having an input and an output; a feedback loop coupled between the input and the output of the amplifier, the feedback loop comprising a compensated resistor circuit having a resistance value selected for reducing a loss factor of the integrator; and a control circuit coupled to an input of the compensated resistor circuit, the control circuit producing a control signal for controlling the compensated resistor circuit to substantially maintain the resistance value selected for reducing the loss factor of the integrator across a range of integrator temperatures.
摘要:
A circuit includes a voltage-controlled oscillator (VCO), which includes a voltage input node having an input voltage; and a start-up circuit. The start-up circuit includes a first current path and a second current path. The first current path has a first current and is configured so that the first current increases in response to a decrease in the input voltage and decreases in response to an increase in the input voltage. The second current path has a second current and is configured so that the second current decreases in response to the decrease in the input voltage and decreases in response to the increase in the input voltage. The VCO further includes a third current path combining a first proportion of the first current and a second proportion of the second current into a combined current; and a current-controlled oscillator (CCO) including an input receiving the combined current and outputting an AC signal.
摘要:
Structures and methods for providing a temperature independent constant current reference are provided. A constant Gm circuit is disclosed with embodiments including a voltage controlled resistor providing a current into a current mirror, the current mirror sinking a reference current at its output. By providing a feedback loop that controls the voltage controlled resistor, a temperature compensated circuit may be obtained. The temperature dependence of the voltage controlled resistor is positive and the feedback circuitry maintains this resistor at a value that compensates for the negative temperature dependence of the current mirror circuit. The reference current is thus obtained at a predetermined level independent of temperature. A method for providing a reference current is disclosed wherein a voltage dependent resistor is provided supply current to a current mirror, the voltage dependent resistor receiving a feedback voltage from the current mirror and the feedback controlling the resistor so that a temperature independent reference current is obtained.
摘要:
Structures and methods for providing a temperature independent constant current reference are provided. A constant Gm circuit is disclosed with embodiments including a voltage controlled resistor providing a current into a current mirror, the current mirror sinking a reference current at its output. By providing a feedback loop that controls the voltage controlled resistor, a temperature compensated circuit may be obtained. The temperature dependence of the voltage controlled resistor is positive and the feedback circuitry maintains this resistor at a value that compensates for the negative temperature dependence of the current mirror circuit. The reference current is thus obtained at a predetermined level independent of temperature. A method for providing a reference current is disclosed wherein a voltage dependent resistor is provided supply current to a current mirror, the voltage dependent resistor receiving a feedback voltage from the current mirror and the feedback controlling the resistor so that a temperature independent reference current is obtained.