摘要:
Carbon nanotube-infused fiber materials containing substantially parallel-aligned, infused carbon nanotubes are described herein. The carbon nanotube-infused fiber materials contain a fiber material and a layer of carbon nanotubes infused to the fiber material, where the infused carbon nanotubes are aligned substantially parallel to the longitudinal axis of the fiber material and at least a portion of the substantially parallel-aligned, infused carbon nanotubes are crosslinked to each other, to the fiber material, or both. Crosslinking can occur through covalent bonding or pi-stacking interactions, for example. The carbon nanotube-infused fiber materials can further contain additional carbon nanotubes that are grown on the layer of substantially parallel-aligned, infused carbon nanotubes. Composite materials containing the carbon nanotube-infused fiber materials and methods for production of the carbon nanotube-infused fiber materials are also described herein.
摘要:
Carbon nanotube-infused fiber materials containing substantially parallel-aligned, infused carbon nanotubes are described herein. The carbon nanotube-infused fiber materials contain a fiber material and a layer of carbon nanotubes infused to the fiber material, where the infused carbon nanotubes are aligned substantially parallel to the longitudinal axis of the fiber material and at least a portion of the substantially parallel-aligned, infused carbon nanotubes are crosslinked to each other, to the fiber material, or both. Crosslinking can occur through covalent bonding or pi-stacking interactions, for example. The carbon nanotube-infused fiber materials can further contain additional carbon nanotubes that are grown on the layer of substantially parallel-aligned, infused carbon nanotubes. Composite materials containing the carbon nanotube-infused fiber materials and methods for production of the carbon nanotube-infused fiber materials are also described herein.
摘要:
Processes for growing carbon nanotubes on metal substrates are described herein. The processes include depositing a catalyst precursor on a metal substrate, optionally depositing a non-catalytic material on the metal substrate, and after depositing the catalyst precursor and the optional non-catalytic material, exposing the metal substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The carbon nanotube growth conditions convert the catalyst precursor into a catalyst that is operable for growing carbon nanotubes. The metal substrate can remain stationary or be transported while the carbon nanotubes are being grown. Metal substrates having carbon nanotubes grown thereon are also described.
摘要:
The present disclosure describes methods for growing carbon nanotubes on metal substrates. The methods include depositing a catalytic material on a metal substrate to form a catalyst-laden metal substrate; optionally depositing a non-catalytic material on the metal substrate prior to, after, or concurrently with the catalytic material; conveying the catalyst-laden metal substrate through a carbon nanotube growth reactor having carbon nanotube growth conditions therein; and growing carbon nanotubes on the catalyst-laden metal substrate. The catalyst-laden metal substrate can optionally remain stationary while the carbon nanotubes are being grown. The catalytic material can be a catalyst or a catalyst precursor. The catalytic material and the optional non-catalytic material can be deposited on the metal substrate from one or more solutions by, for example, spray coating or dip coating techniques.
摘要:
A method includes: (a) conformally depositing a barrier coating, provided in liquid form, on at least one surface of a substrate; (b) embedding a plurality of nanoparticles in the barrier coating to a selected depth; and (c) fully curing the barrier coating after embedding the plurality of nanoparticles; the embedded plurality of nanoparticles are in continuous contact with the cured barrier coating. The order in which the barrier coating and nanoparticles are deposited on the substrate can be switched or they can be deposited simultaneously. An article includes a substrate having a cured barrier coating conformally disposed on at least one surface of the substrate and a plurality of nanoparticles embedded to a selected depth in the barrier coating creating an embedded portion of each of the plurality of nanoparticles. The embedded portion of each of the plurality of nanoparticles in continuous contact with the cured barrier coating.
摘要:
A system for synthesizing carbon nanotubes (CNT) on a fiber material includes a surface treatment system adapted to modify the surface of the fiber material to receive a barrier coating upon which carbon nanotubes are to be grown, a barrier coating application system downstream of the surface treatment system adapted to apply the barrier coating to the treated fiber material surface, and a barrier coating curing system downstream of the barrier coating application system for partially curing the applied barrier coating to enhance reception of CNT growth catalyst nanoparticles.
摘要:
Methods for growing carbon nanotubes on glass substrates, particularly glass fiber substrates, are described herein. The methods can include depositing a catalytic material or a catalyst precursor on a glass substrate; depositing a non-catalytic material on the glass substrate prior to, after, or concurrently with the catalytic material or catalyst precursor; and exposing the glass substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The glass substrate, particularly a glass fiber substrate, can be transported while the carbon nanotubes are being grown thereon. Catalyst precursors can be converted into a catalyst when exposed to carbon nanotube growth conditions. The catalytic material or catalyst precursor and the non-catalytic material can be deposited from a solution containing water as a solvent. Illustrative deposition techniques include, for example, spray coating and dip coating.
摘要:
Processes for growing carbon nanotubes on carbon fiber substrates are described herein. The processes can include depositing a catalyst precursor on a carbon fiber substrate, optionally depositing a non-catalytic material on the carbon fiber substrate, and after depositing the catalyst precursor and the optional non-catalytic material, exposing the carbon fiber substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The carbon nanotube growth conditions can convert the catalyst precursor into a catalyst that is operable for growing carbon nanotubes. The carbon fiber substrate can remain stationary or be transported while the carbon nanotubes are being grown. Optionally, the carbon fiber substrates can include a barrier coating and/or be free of a sizing agent. Carbon fiber substrates having carbon nanotubes grown thereon are also described.
摘要:
Processes for growing carbon nanotubes on carbon fiber substrates are described herein. The processes can include depositing a catalyst precursor on a carbon fiber substrate, optionally depositing a non-catalytic material on the carbon fiber substrate, and after depositing the catalyst precursor and the optional non-catalytic material, exposing the carbon fiber substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The carbon nanotube growth conditions can convert the catalyst precursor into a catalyst that is operable for growing carbon nanotubes. The carbon fiber substrate can remain stationary or be transported while the carbon nanotubes are being grown. Optionally, the carbon fiber substrates can include a barrier coating and/or be free of a sizing agent. Carbon fiber substrates having carbon nanotubes grown thereon are also described.
摘要:
A quality control system for the manufacture of carbon nanostructure-laden substrates includes a resistance measurement module for continuously measuring resistance of the carbon nanostructure (CNS)-laden substrate.