Abstract:
An electrical connector is provided for mating with a mating connector. The electrical connector includes a housing and electrical contacts held by the housing. The electrical contacts are configured to mate with corresponding mating contacts of the mating connector. A sense pin is held by the housing and is configured to mate with a corresponding mating contact of the mating connector. The sense pin extends a length that includes a tip segment and a sensing segment. The tip and sensing segments have different electrical characteristics. The tip segment includes a tip of the sense pin. The tip segment extends between the sensing segment and the tip such that the sensing segment is offset from the tip along the length of the sense pin. The sensing segment is configured to indicate that the electrical contacts and the mating contacts are de-mated by more than a predetermined de-mating distance.
Abstract:
Printed circuit includes a planar substrate having opposite sides and a thickness extending therebetween. The sides extend parallel to a lateral plane. The printed circuit also includes a plurality of conductive vias extending through the planar substrate in a direction that is perpendicular to the lateral plane. The conductive vias include ground vias and signal vias. The signal vias form a plurality of quad groups in which each quad group includes a two-by-two array of the signal vias. Optionally, the printed circuit also includes signal traces that electrically couple to the signal vias. The signal traces may form a plurality of quad lines in which each quad line includes four of the signal traces. The four signal traces of each quad line may extend parallel to one another and be in a two-by-two formation.
Abstract:
Cable assembly including a mating connector having a plurality of communication terminals. The mating connector is configured to mate with a system connector of a communication system during a loading operation. The cable assembly includes a trailing sub-assembly having an intermediate connector and an external cable that is terminated to the intermediate connector. The cable assembly also includes a flexible cable extension having signal pathways that are terminated to and extend from the intermediate connector to the mating connector. The intermediate connector communicatively interconnects the signal pathways and the external cable. The mating connector is configured to engage a guide track when inserted into the communication system and slide along the guide track toward the system connector along a non-linear path. The flexible cable extension permits the signal pathways to bend while transferring an operative force for mating the system connector and the mating connector.
Abstract:
An electrical connector is provided for mating with a mating connector. The electrical connector includes a housing and electrical contacts held by the housing. The electrical contacts are configured to mate with corresponding mating contacts of the mating connector. A sense pin is held by the housing and is configured to mate with a corresponding mating contact of the mating connector. The sense pin extends a length that includes a tip segment and a sensing segment. The tip and sensing segments have different electrical characteristics. The tip segment includes a tip of the sense pin. The tip segment extends between the sensing segment and the tip such that the sensing segment is offset from the tip along the length of the sense pin. The sensing segment is configured to indicate that the electrical contacts and the mating contacts are de-mated by more than a predetermined de-mating distance.
Abstract:
Linking cable connector includes a lead frame held in an interior cavity of a cover. The lead frame includes conductive leads arranged side by side in a row and extending between a first end and an opposite second end of the lead frame. At least some adjacent conductive leads are spaced on a first lead pitch at the first end, and are spaced on a second lead pitch at the second end. The second lead pitch is less than the first lead pitch. The conductive leads engage and electrically connect to corresponding wire conductors of a first cable harness at the first end of the lead frame, and the conductive leads engage and electrically connect to corresponding wire conductors of a second cable harness at the second end of the lead frame such that the leads provide conductive paths between the first and second cable harnesses.
Abstract:
Cable connector including a connector body extending along a longitudinal axis between a mating side and a loading side of the connector body. The connector body is oriented with respect to a mating axis that is perpendicular to the longitudinal axis. The cable connector also includes electrical conductors having body segments that extend through the connector body between the mating and loading sides and contact beams that project from the mating side. The contact beams have mating interfaces that are configured to directly engage corresponding electrical contacts of a mating component during a mating operation. The contact beams are shaped to extend along the longitudinal axis away from the mating side and along the mating axis such that the mating interfaces form a two-dimensional (2D) array that is oriented substantially perpendicular to the mating axis.
Abstract:
Cable connector including a connector body extending along a longitudinal axis between a mating side and a loading side of the connector body. The connector body is oriented with respect to a mating axis that is perpendicular to the longitudinal axis. The cable connector also includes electrical conductors having body segments that extend through the connector body between the mating and loading sides and contact beams that project from the mating side. The contact beams have mating interfaces that are configured to directly engage corresponding electrical contacts of a mating component during a mating operation. The contact beams are shaped to extend along the longitudinal axis away from the mating side and along the mating axis such that the mating interfaces form a two-dimensional (2D) array that is oriented substantially perpendicular to the mating axis.
Abstract:
An electrical connector that includes a housing configured to be coupled to a mating connector. The connector has signal contacts held in signal contact openings. The signal contacts are arranged in arrays of quad groups. Each of the quad group has a set of four contacts arranged in row pairs and column pairs. The signal contacts of each quad group are configured to carry relational signals with each other signal contact in the quad group. Each signal contact is configured to electrically couple to a signal contact of the mating connector. The connector also includes ground shields held in corresponding ground shield openings. The ground shields have walls surrounding a corresponding quad group of signal contacts and provides electrical shielding from adjacent quad groups of signal contacts. The ground shields have mating ends for mating with corresponding ground contacts of the mating connector.
Abstract:
An electrical connector that includes a housing configured to be coupled to a mating connector. The connector has signal contacts held in signal contact openings. The signal contacts are arranged in arrays of quad groups. Each of the quad group has a set of four contacts arranged in row pairs and column pairs. The signal contacts of each quad group are configured to carry relational signals with each other signal contact in the quad group. Each signal contact is configured to electrically couple to a signal contact of the mating connector. The connector also includes ground shields held in corresponding ground shield openings. The ground shields have walls surrounding a corresponding quad group of signal contacts and provides electrical shielding from adjacent quad groups of signal contacts. The ground shields have mating ends for mating with corresponding ground contacts of the mating connector.
Abstract:
A cable contact module of a cable connector assembly includes a dielectric frame, signal contacts, and a ground frame. The signal contacts, held by the dielectric frame, include contact beams that extend from a front of the dielectric frame and electrically connect to signal contact pads on a mating circuit card. The signal contacts are terminated to corresponding cables that extend from a rear of the dielectric frame. Each cable includes at least one center conductor housed within a cable shield. The ground frame includes a ground plate and integral ground beams. The ground plate is mounted to the dielectric frame and engages the cable shields of the cables. Each ground beam extends from a front edge of the ground plate into a void defined between adjacent pairs of the contact beams. The ground beams are configured to electrically connect to ground contact pads on the mating circuit card.