摘要:
A manufacturing method of a high aspect ratio shallow trench isolation region. A substrate with a trench therein is provided and placed into a chamber. A first insulation layer is formed on the substrate as well as inside the trench by high density plasma chemical vapor deposition. The majority of the first insulation layer outside the trench is removed by in situ etching using carbon fluoride as an etching gas with high selectivity for SiO2/SiN etching ratio, and a second insulation layer is formed on the first insulation layer by high density plasma chemical vapor deposition, filling the trench. According to the present invention, a high aspect ratio shallow trench isolation region without voids can thus be achieved.
摘要:
A method for fabricating a semiconductor a semiconductor device having a stacked-gate structure. A polysilicon layer is formed overlying a substrate, which is insulated from the substrate by a dielectric layer. A metal-flash layer is formed overlying the polysilicon layer, and then a tungsten nitride layer is formed overlying the titanium layer. The tungsten nitride layer is annealed using nitrogen and hydrogen gases. A tungsten layer and a cap layer are successively formed overlying the tungsten nitride layer.
摘要:
A method for forming a trench isolation. A semiconductor substrate with an opening is provided, on which a mask layer is formed. A first insulating layer is conformably formed on the semiconductor substrate and the trench, and the trench is filled with the first insulating layer. The first insulating layer is anisotropically etched to below the semiconductor substrate. A second insulating layer is formed on the semiconductor substrate and the trench. The second insulating layer is planarized to expose the mask layer.
摘要:
A method for fabricating STI for semiconductor device. The method includes the following steps. A trench is formed on the semiconductor substrate, a liner oxide is formed on the bottom and sidewall of the trench, and then a liner nitride is formed on the liner oxide. The first oxide layer is deposited in the trench by high density plasma chemical vapor deposition. The first oxide layer is spray-etched to a predetermined depth, wherein the recipe of the spray etching solution is HF/H2SO4=0.3˜0.4. A second oxide layer is deposited to fill the trench by high density plasma chemical vapor deposition to form a shallow trench isolation structure.
摘要翻译:一种制造用于半导体器件的STI的方法。 该方法包括以下步骤。 在半导体衬底上形成沟槽,在沟槽的底部和侧壁上形成衬里氧化物,然后在衬里氧化物上形成衬里氮化物。 第一氧化物层通过高密度等离子体化学气相沉积沉积在沟槽中。 将第一氧化物层喷雾刻蚀至预定深度,其中喷雾蚀刻溶液的配方为HF / H 2 SO 4 = 0.3〜0.4。 沉积第二氧化物层以通过高密度等离子体化学气相沉积填充沟槽以形成浅沟槽隔离结构。
摘要:
A method for fabricating a semiconductor a semiconductor device having a stacked-gate structure. A polysilicon layer is formed overlying a substrate, which is insulated from the substrate by a dielectric layer. A metal-flash layer is formed overlying the polysilicon layer, and then a tungsten nitride layer is formed overlying the titanium layer. The tungsten nitride layer is annealed using nitrogen and hydrogen gases. A tungsten layer and a cap layer are successively formed overlying the tungsten nitride layer.
摘要:
The present invention provides a method for manufacturing a stacked gate structure in a semiconductor device. The method includes the steps of sequentially forming a gate dielectric layer, a poly-silicon layer, a metal layer, a barrier layer, and a tungsten layer on a semiconductor substrate, carrying out a rapid thermal annealing (RTA) in a nitrogen ambient, forming a silicon nitride layer on the tungsten layer, and patterning the multilayer thin-film structure into a predetermined configuration.
摘要:
The present invention provides a method for manufacturing a stacked-gate structure in a semiconductor device. The method includes the steps of sequentially forming a gate dielectric layer, a poly-silicon layer, a titanium layer, and a WNX layer on a semiconductor substrate, carrying out a rapid thermal annealing (RTA) in a nitrogen ambient, forming a silicon nitride layer on the tungsten layer, and patterning the multilayer thin-film structure into a predetermined configuration.
摘要:
The present invention provides a method for manufacturing a stacked-gate structure in a semiconductor device. The method includes the steps of sequentially forming a gate dielectric layer, a poly-silicon layer, a titanium layer, and a WNX layer on a semiconductor substrate, carrying out a rapid thermal annealing (RTA) in a nitrogen ambient, forming a silicon nitride layer on the tungsten layer, and patterning the multilayer thin-film structure into a predetermined configuration.
摘要:
A method for fabricating a semiconductor a semiconductor device having a stacked-gate structure. A polysilicon layer is formed overlying a substrate, which is insulated from the substrate by a dielectric layer. A metal-flash layer is formed overlying the polysilicon layer, and then a tungsten nitride layer is formed overlying the titanium layer. The tungsten nitride layer is annealed using nitrogen and hydrogen gases. A tungsten layer and a cap layer are successively formed overlying the tungsten nitride layer.
摘要:
A method for forming a trench isolation. A semiconductor substrate with an opening is provided, on which a mask layer is formed. A first insulating layer is conformably formed on the semiconductor substrate and the trench, and the trench is filled with the first insulating layer. The first insulating layer is anisotropically etched to below the semiconductor substrate. A second insulating layer is formed on the semiconductor substrate and the trench. The second insulating layer is planarized to expose the mask layer.