Abstract:
A method of manufacturing a composite vessel assembly includes the step of placing the composite vessel assembly in a pliable containment prior to curing of a resin of the composite vessel assembly. With the composite vessel assembly in the pliable containment, a vacuum is applied through an orifice in the pliable containment to evacuate air and compact the composite vessel assembly.
Abstract:
A composite vessel assembly includes a circumferentially continuous wall and an end cap. The wall includes a plurality of layers, and the end cap includes a plurality of steps. Each step of the plurality of steps is engaged to a respective layer of the plurality of layers.
Abstract:
A pressure vessel assembly includes a vessel including a wall defining a chamber and a circumferentially continuous lip projecting into the chamber from the wall. The lip defines a through-bore in fluid communication with the chamber. A nozzle assembly including a tube and a flange projecting radially outward from the tube. The tube includes a first portion projecting from the flange and through the through-bore and an opposite second portion projecting outward from the flange. The flange is in contact with the wall and the first portion includes an outer surface having a contour configured to produce sealing friction between the lip and the outer surface.
Abstract:
A method of manufacturing a composite vessel assembly includes the step of placing the composite vessel assembly in a pliable containment prior to curing of a resin of the composite vessel assembly. With the composite vessel assembly in the pliable containment, a vacuum is applied through an orifice in the pliable containment to evacuate air and compact the composite vessel assembly.
Abstract:
An illustrative example container includes a plurality of internal support members having a surface contour that at least approximates a minimum surface. The plurality of internal support members collectively provide structural support for carrying loads on the container. The plurality of internal support members collectively establish a plurality of cavities for at least temporarily containing fluid. An outer shell is connected with at least some of the internal support members. The outer shell includes a plurality of curved surfaces. The outer shell encloses the cavities.
Abstract:
A structural panel includes a first skin, a second skin and a core. The core is connected to the first skin and the second skin. The core includes a corrugated sheet of wire mesh that includes a plurality of corrugations. Each of the corrugations extends vertically between and engages the first skin and the second skin.
Abstract:
A composite pressure vessel assembly includes a first vessel having a first inner layer and a second vessel having a second inner layer. An outer layer of the assembly is in contact with and substantially envelopes the first and second inner layers. A junction of the assembly has outer boundaries defined by segments of the first inner layer, the second inner layer and the outer layer. A cross-layered component of the assembly is disposed in the junction, the first and second inner layers and the outer layer for adding strength to the junction and restricting delamination.
Abstract:
A pressure vessel configured to store a pressurized fluid is provided including a plurality of lobes. Each lobe includes at least one vertically arranged interior wall. The plurality of lobes are positioned in a side by side configuration such that a first interior wall of a first lobe is positioned adjacent a second interior wall of a second adjacent lobe. The first interior wall and the second interior wall are configured to contact one another at a first point of tangency. A first tangent intersects the first lobe at the first point of tangency and a second tangent intersects the second lobe at the first point of tangency. The first tangent and the second tangent are separated by about 120 degrees.
Abstract:
A composite pressure vessel assembly includes at least one liner defining a chamber. The liner is perforated such that an applied composite layer envelops the liner and at least partially extrudes into the perforations during manufacture and when the chamber is placed under a vacuum.
Abstract:
A composite vessel assembly includes a circumferentially continuous wall and an end cap. The wall includes a plurality of layers, and the end cap includes a plurality of steps. Each step of the plurality of steps is engaged to a respective layer of the plurality of layers.