摘要:
Minimally invasive neurosurgical intracranial robot system is introduced to the operative site by a neurosurgeon through a narrow surgical corridor. The robot is passed through a cannula and is attached to the cannula by a latching mechanism. The robot has several links interconnected via revolute joints which are tendon-driven by tendons routed through channels formed in the walls of the links. The robot is teleoperatively guided by the neurosurgeon based on real-time images of the intracranial operative site and tracking information of the robot position. The robot body is equipped with a tracking system, tissue liquefacting end-effector, at as well as irrigation and suction tubes. Actuators for the tendon-driven mechanism are positioned at a distance from the imaging system to minimize distortion to the images. The tendon-actuated navigation of the robot permits an independent control of the revolute joints in the robot body.
摘要:
Telemetrical control of a robotic interventional device for minimally invasive surgical procedure is based on an operative interaction between a tracking sub-system, MRI sub-system, navigation sub-system and the robotic interventional device. The tracking sensor sub-system is integrated with the interventional device to produce tracking information corresponding to the robotic interventional device location in the operative site. The navigation sub-system integrates the tracking information with the real-time images of the operative site produced by the MRI sub-system, and displays the integrated information to a user, to enable the telemetrical control of the interventional device for performing an intended procedure (biopsy, tissue resection, etc.). The navigation sub-system, based on the integrated real-time tracking information and real-time images, calculates and dynamically updates coordinates of subsequent imaging slices.