Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus (2) comprises: (i) a dissolved oxygen sensor (4) for sensing dissolved oxygen in the water; and which apparatus (2) is such that: (ii) the dissolved oxygen sensor (4) has a working electrode and a reference electrode; and (iii) a voltage signal is applied between the working electrode and the reference electrode, and the voltage signal provides a conditioning waveform, then a wait time, and then a measurement function.
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus (2) comprises: (i) a conductivity sensor (6) for sensing conductivity in water; (ii) the conductivity sensor (6) is an electrode-based conductivity sensor having bare electrodes (12) which contact the water; (iii) there are at least four of the electrodes (12); (iv) the conductivity sensor (6) is fabricated on a substrate (14) using photolithography and etching; (v) the conductivity sensor (6) is an open cell sensor having a physically unconstrained electric field; (vi) the conductivity sensor (6) is of a dot construction comprising a dot and a surrounding formation; (vii) the conductivity sensor (6) has two electrodes which are for current stimulation and which geometrically bound and enclose another two electrodes which are for voltage sensing; and (viii) the conductivity sensor (6) is a laminar construction on the substrate (14).
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus comprises: (i) a conductivity sensor (6) for sensing conductivity in the water; (ii) a dissolved oxygen sensor (4) for sensing dissolved oxygen in the water; (iii) a glass substrate (14); and (iv) the conductivity sensor (6) and the dissolved oxygen sensor (4) are fabricated on the glass substrate (14) using photolithography and etching.
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus comprises: (i) a conductivity sensor (6) for sensing conductivity in the water; (ii) a dissolved oxygen sensor (4) for sensing dissolved oxygen in the water; (iii) a glass substrate (14); and (iv) the conductivity sensor (6) and the dissolved oxygen sensor (4) are fabricated on the glass substrate (14) using photolithography and etching.
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus (2) comprises: (i) a conductivity sensor (6) for sensing conductivity in water; (ii) the conductivity sensor (6) is an electrode-based conductivity sensor having bare electrodes (12) which contact the water; (iii) there are at least four of the electrodes (12); (iv) the conductivity sensor (6) is fabricated on a substrate (14) using photolithography and etching; (v) the conductivity sensor (6) is an open cell sensor having a physically unconstrained electric field; (vi) the conductivity sensor (6) is of a dot construction comprising a dot and a surrounding formation; (vii) the conductivity sensor (6) has two electrodes which are for current stimulation and which geometrically bound and enclose another two electrodes which are for voltage sensing; and (viii) the conductivity sensor (6) is a laminar construction on the substrate (14).
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus (2) comprises: (i) at least one electrode based sensor (4, 6) for sensing at least one parameter in water; and which apparatus (2) is such that: (ii) the electrode based sensor (4, 6) has a self-cleaning electrode; (iii) the electrode based sensor (4, 6) has a reference electrode; (iv) the self-cleaning electrode is stable in water; (v) the apparatus (2) is configured to operate by liberating chlorine from the water using a first waveform applied to the self-cleaning electrode; (VI) the apparatus (2) is configured to operate by liberating chlorine and oxygen from the water using a second waveform applied to the self-cleaning electrode; and (VII) the apparatus (2) is configured to preserve the condition of the reference electrode by periodically regenerating the reference electrode.
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus (2) comprises: (i) at least one electrode based sensor (4, 6) for sensing at least one parameter in water; and which apparatus (2) is such that: (ii) the electrode based sensor (4, 6) has a self-cleaning electrode; (iii) the electrode based sensor (4, 6) has a reference electrode; (iv) the self-cleaning electrode is stable in water; (v) the apparatus (2) is configured to operate by liberating chlorine from the water using a first waveform applied to the self-cleaning electrode; (VI) the apparatus (2) is configured to operate by liberating chlorine and oxygen from the water using a second waveform applied to the self-cleaning electrode; and (VII) the apparatus (2) is configured to preserve the condition of the reference electrode by periodically regenerating the reference electrode.
Abstract:
Apparatus (2) for sensing at least one parameter in water, which apparatus (2) comprises: (i) a dissolved oxygen sensor (4) for sensing dissolved oxygen in the water; and which apparatus (2) is such that: (ii) the dissolved oxygen sensor (4) has a working electrode and a reference electrode; and (iii) a voltage signal is applied between the working electrode and the reference electrode, and the voltage signal provides a conditioning waveform, then a wait time, and then a measurement function.