Abstract:
A fault detection assembly for an aircraft system according to an example of the present disclosure includes, among other things, a transmitter that communicates an electrical input signal to a first portion of an electrical connector, the first portion moveable between a fully seated position and a fully unseated position relative to a second portion of the electrical connector to define a range of insertion depths, a receiver that senses an electrical output signal relating to the electrical input signal, and a comparison module that determines an insertion depth in the range of insertion depths based on a change in a resonant frequency of the electrical output signal with respect to the electrical input signal.
Abstract:
A sensor system includes a load-carrying element, an encoder structure, and a magnetic flux transducer. The load-carrying element is formed of substantially non-magnetic material, while the encoder structure is formed of magnetic material deposited via cold spray additive manufacturing within the load-carrying element. The magnetic flux transducer is disposed adjacent the load-carrying element to sense changes in magnetic flux caused by relative motion of the encoder structure.
Abstract:
A wear monitoring system for measuring incursion depth into an abradable coating includes a layer of abradable coating including a depth. At least one measurement circuit includes a plurality of conductive leads disposed within the abradable coating. The conductive leads are spaced radially apart within a common radial plane corresponding to the depth of the abradable coating. A plurality of resistor elements corresponds with the plurality of conductive leads. Each of the plurality of resistor elements are in electrical communication with one of the plurality of conductive leads disposed within the common radial plane of the corresponding one of the plurality of conductive leads. An electrical characteristic of the circuit varies responsive to cutting of one or more of the plurality of conductive leads by a passing airfoil. A gas turbine engine and method are also disclosed.
Abstract:
A magnetic communication system for a gas turbine engine may include a sensor coupled to a microcontroller. A low frequency radio-frequency identification integrated chip may be coupled to the microcontroller. A first coupling circuit may be coupled to the low frequency radio-frequency identification integrated chip and may include a first coil winding wound within a first core. The first coil winding operatively associated with a low frequency magnetic flux.
Abstract:
The present disclosure relates generally to a sensor including inductively coupled coils. Alignment of the coils may be maintained by constraining relative movement of the structures into which each of the coils is embedded. Alignment of the coils may be established by maintaining the transponder coil stationary while moving the reader coil with respect to the transponder coil and monitoring the current at the source supplying the reader coil. When the current at the source is at an extreme value (substantially maximized or minimized), the reader coil and the transponder coil are aligned. Additionally disclosed is an iterative process for designing coil geometries and resonant circuits for a sensor employing inductively coupled coils.
Abstract:
An apparatus and method for detecting a short in a blade of a gas turbine engine, the apparatus including: a first plate configured to form a first capacitor with the protective sheath when the apparatus is located proximate to the blade; a second plate configured to form another capacitor with a portion of the airfoil when the apparatus is located proximate to the blade; and a voltage source electrically connected to the first plate and the second plate.
Abstract:
A magnetic communication system for a gas turbine engine may include a sensor coupled to a microcontroller. A low frequency radio-frequency identification integrated chip may be coupled to the microcontroller. A first coupling circuit may be coupled to the low frequency radio-frequency identification integrated chip and may include a first coil winding wound within a first core. The first coil winding operatively associated with a low frequency magnetic flux.
Abstract:
An apparatus and method for detecting a short in a blade of a gas turbine engine, the apparatus including: a first plate configured to form a first capacitor with the protective sheath when the apparatus is located proximate to the blade; a second plate configured to form another capacitor with a portion of the airfoil when the apparatus is located proximate to the blade; and a voltage source electrically connected to the first plate and the second plate.
Abstract:
A sensing system may comprise a reader device including a primary magnetic coil, and a sensing device including a secondary magnetic coil and a sensing platform configured to acquire sensing data. The sensing system may further include a first part having the sensing device embedded therein. The reader device and the sensing device may be configured to communicate over a non-contact wireless interface using low frequency wireless power transfer.
Abstract:
A fault detection assembly for an aircraft system according to an example of the present disclosure includes, among other things, a transmitter that communicates an electrical input signal to a first portion of an electrical connector, the first portion moveable between a fully seated position and a fully unseated position relative to a second portion of the electrical connector to define a range of insertion depths, a receiver that senses an electrical output signal relating to the electrical input signal, and a comparison module that determines an insertion depth in the range of insertion depths based on a change in a resonant frequency of the electrical output signal with respect to the electrical input signal.