Abstract:
The present invention is to provide a printed circuit board, which comprises a substrate, a conductive pattern disposed on a surface of said substrate and a solder mask coated on the surface of said substrate and covered over the conductive pattern. The conductive pattern has a bonding pad. The solder mask has an opening corresponding in location to the bonding pad such that a portion of the bonding pad is exposed outside. A space is left between said solder mask and said bonding pad and is communicated with the opening. Whereby, a solder ball can be received in the opening and the space and electrically connected to the bonding pad, such that the solder ball is held on the printed circuit board securely.
Abstract:
The present invention is to provide a double-sided thermally enhanced IC chip package which includes a chip being received in an opening of a substrate and electrically connected to a conductive circuit pattern on a top surface of the substrate through bonding wires. A thermally and electrically conductive planar member is attached to an inactive side of the chip through a thermally and electrically conductive adhesive layer. A portion of an active side of the chip to which the bonding wires are connected is encapsulated by a dielectric encapsulant, and the other portion of the active side of the chip is covered by a thermally and electrically conductive encapsulant. Thus, heat generated by the chip can be efficiently dissipated through the planar member and the thermally and electrically conductive encapsulant. The present invention also discloses a stacked chip package with double-sided heat dissipation capability.