Abstract:
An apparatus, system, and method for filtering and assaying a fluid sample are described. In an embodiment, the apparatus includes a filtration unit comprising: a filter bracket shaped to removably couple with a fluid sample cup and a vacuum container; and a filter housing cooperatively couplable to the filter bracket and comprising a filter configured to filter fluid passing through the filter bracket; and an assay device shaped to cooperatively couple with the filter housing and comprising a porous matrix positioned to be in fluidic communication with the filter when the filter housing is cooperatively coupled with the assay device.
Abstract:
The present technology relates generally to systems for disrupting biological samples and associated devices and methods. In some embodiments, the system includes a vessel configured to receive a biological sample and a cap assembly that includes a porous membrane having a receiving region and a detection region. When the cap assembly is detachably coupled to an open end portion of the vessel, the system can be moved between a first orientation and a second orientation. When the system is in the first orientation, the biological sample is not in fluid communication with the receiving region. When the vessel contains is in the second orientation, the biological sample is in fluid communication with the receiving region and wicks through the porous membrane to the detection region.
Abstract:
Fluidic devices, systems, and methods for analyzing an analyte are described. In an embodiment, the fluidic devices include a housing defining a lysis chamber shaped to receive a biological sample; a lysis buffer storage chamber disposed within the housing and carrying a lysis buffer configured to lyse cells of the biological sample; a cap configured to cooperatively couple to the housing; a compressor configured to compress the lysis buffer storage chamber and expel the lysis buffer from the lysis buffer storage chamber and into the lysis chamber when the cap is uncoupled from the housing; and a porous membrane in selective fluidic communication with the lysis chamber.
Abstract:
The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a first porous element having a first pore size and configured to receive a fluid at its proximal portion, and a second porous element having a second pore size greater than the first pore size and configured to receive a fluid at its proximal portion. The first porous element can be positioned across the second porous element such that an overlapping region exists between the porous elements where the porous elements are in fluid communication. Before delivery of the fluid to the second porous element, the fluid pressure at the overlapping region is greater than the capillary pressure of the second porous element such that a fluid delivered to the first porous element wicks through its overlapping portion without wetting the second porous element.