Abstract:
The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
Abstract:
The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
Abstract:
The present technology is related to methods and compositions for detecting, and optionally quantifying, one or more analytes of a sample using nucleic acids. In some embodiments, the methods include generating a complex of a plurality of peptides, an analyte, a first nucleic acid, and a second nucleic acid, each nucleic acid conjugated to a binder peptide. In addition, an immobilizer peptide can be immobilized to a substrate. If the binder peptides are bound to the analyte, the method further includes hybridizing a segment of the first nucleic acid to a segment of the second nucleic acid and amplifying the hybridized nucleic acids to generate a plurality of amplicons. Moreover, the generated amplicons indicate that one or more analytes has been detected. A number of generated amplicons can be analyzed to quantify one or more of the bound analytes.
Abstract:
The present technology relates generally to systems for disrupting biological samples and associated devices and methods. In some embodiments, the system includes a vessel configured to receive a biological sample and a cap assembly that includes a porous membrane having a receiving region and a detection region. When the cap assembly is detachably coupled to an open end portion of the vessel, the system can be moved between a first orientation and a second orientation. When the system is in the first orientation, the biological sample is not in fluid communication with the receiving region. When the vessel contains is in the second orientation, the biological sample is in fluid communication with the receiving region and wicks through the porous membrane to the detection region.
Abstract:
The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
Abstract:
The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
Abstract:
The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
Abstract:
Temperature-actuated valves, devices including temperature-actuated valves, and related methods are described. In an embodiment, the temperature-actuated valve includes a heat-shrink film defining a perforation extending at least partially in a first direction. In an embodiment, the temperature-actuated valve is configured to open when a portion of the heat-shrink film including the perforation is heated above a threshold temperature to contract the heat-shrink film along a second direction perpendicular to the first direction to define an aperture, in an open configuration, providing a fluid a path through the heat-shrink film. In an embodiment, the temperature-actuated valve includes a leakage-mitigation feature configured to limit fluid flow through the perforation when the valve is in a closed configuration.
Abstract:
Temperature-actuated valves, devices including temperature-actuated valves, and related methods are described. In an embodiment, the temperature-actuated valve includes a heat-shrink film defining a perforation extending at least partially in a first direction. In an embodiment, the temperature-actuated valve is configured to open when a portion of the heat-shrink film including the perforation is heated above a threshold temperature to contract the heat-shrink film along a second direction perpendicular to the first direction to define an aperture, in an open configuration, providing a fluid a path through the heat-shrink film. In an embodiment, the temperature-actuated valve includes a leakage-mitigation feature configured to limit fluid flow through the perforation when the valve is in a closed configuration.
Abstract:
The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.