摘要:
Composite materials having a multi-wall carbon nanotube content of from 4 to 15% by weight, based on total weight of the composite, are produced from a dispersion of multi-wall carbon nanotubes (MWCNTs) and a fiber reinforcing material in a carrier fluid which is processed to form a shaped article that may then be infused with a liquid polymer or polymer-forming mixture to form the composite.
摘要:
A reinforced polymer composite that includes a Class A surface and method of making are disclosed. A reinforced polymer composite comprises a polymeric barrier layer that comprises a barrier layer first surface, a barrier layer second surface, and a plurality of hard segment domains. A reinforced polymer composite also comprises a reinforced polymeric layer covering at least a portion of the barrier layer first surface, wherein the barrier layer second surface exhibits a Class A quality, and wherein the plurality of hard segment domains substantially suppress deformation of the polymeric barrier layer at a molding temperature of the reinforced polymer composite. Optionally, an in-mold coating that has a Class A surface covers at least a portion of the barrier layer second surface.
摘要:
Low density microcellular polyurethane foams suitable for athletic shoe midsoles and other applications are prepared by diol chain extension of 12 to 16% free NCO isocyanate-terminated prepolymers prepared by reacting an excess of di- or polyisocyanate with one or more high molecular weight, high functionality polyoxypropylene diols preferably employing water as a reactive blowing agent. The microcellular elastomers exhibit increased hardness despite the higher molecular weight of the polyoxypropylene diol and further exhibit greater tear resistance, lower compression set, and markedly lower shrinkage.
摘要:
Microcellular polyurethane elastomers having sharply reduced or virtually no urea linkages may be prepared without resort to organic physical blowing agents by frothing a frothable mixture containing isocyanate reactive polyols and chain extenders, and a frothable isocyanate component. The isocyanate component is derived by reacting a stoichiometric excess of a di- or polyisocyanate with a polyol component containing an ultra-low unsaturation polyol. The froth-produced elastomers surprisingly exhibit greatly improved tear strengths, compression set, and other physical properties as compared to all water-blown microcellular elastomers of the same density.
摘要:
Elastomers exhibiting decreased demold times and improved green strength are prepared by reacting a di- or polyisocyanate with a monodisperse polyoxypropylene diol having ultra-low unsaturation, and preferably prepared by the double metal cyanide.t-butyl alcohol catalyzed polymerization of propylene oxide. Further improved demold times and elevated elastomer physical properties are made possible by the use of multidisperse polyoxyalkylene polyether polyol blends having an overall unsaturation of less than 0.010 meq/g and a polydispersity of about 1.4 or greater.
摘要:
Elastomers exhibiting decreased demold times and improved green strength are prepared by reacting a di- or polyisocyanate with a monodisperse polyoxypropylene diol having ultra-low unsaturation, and preferably prepared by the double metal cyanide.t-butyl alcohol catalyzed polymerization of propylene oxide. Further improved demold times and elevated elastomer physical properties are made possible by the use of multidisperse polyoxyalkylene polyether polyol blends having an overall unsaturation of less than 0.010 meq/g and a polydispersity of about 1.4 or greater.
摘要:
A moldable composition which comprises a novel random N-(brominated or chlorinated phenyl) maleimide-containing copolymer, a thermoplastic resin, preferably, polycarbonate and a flame retardant synergist is disclosed. The molded composition exhibits at least a 94 V-1 classification when tested in accordance with Underwriters Laboratories Inc. Test Method UL94.
摘要:
A moldable composition which comprises a novel random bromostyrene-containing copolymer and a flame-retardant synergist is disclosed. The molded composition exhibits at least a 94V-1 classification when tested in accordance with Underwriters' Laboratories Inc. Test Method UL94.
摘要:
Microcellular polyurethane flexible foams having densities no greater than 0.3 g/cc which are suitable for use as lightweight shoe sole components are produced with carbon dioxide in an amount such that the polyurethane-forming mixture has a free rise density of from about 0.03 to about 0.3 g/cc. At least a portion of that carbon dioxide is dissolved as a gas into one or both of the reaction components. The amount of dissolved carbon dioxide must be such that the froth density of the isocyanate and/or isocyanate-reactive component(s) in which the carbon dioxide is dissolved will be from about 0.1 to about 0.8 g/cc. Additional carbon dioxide may be formed by the reaction of water and isocyanate during the polyurethane-forming reaction but the total amount of CO2 present should be controlled to ensure that the polyurethane-forming mixture has a free rise density of from about 0.03 to 0.3 g/cc. Use of a preferred isocyanate-reactive component in which a specified ratio of diol to triol is satisfied makes it possible to use more water than had been expected. Use of a preferred prepolymer makes it possible to produce microcellular polyurethanes having good physical properties solely with a diol. The product microcellular foams possess a uniform cell structure and enhanced physical properties as compared to all water-blown foams of the same basic formulation and density. The hardness of the foams is more suitable for shoe sole, particularly midsole applications, than that of the water-blown foams, despite the lower urea hard segment content of the CO2 blown foams.
摘要:
Low-toxicity invert emulsion fluids for well drilling are disclosed. The fluids comprise a non-hydrocarbon, non-mineral oil continuous phase and a dispersed aqueous phase. The continuous phase materials of the invention pass the 48 hour, LC50 Mysidopsis bahia bioassay test protocol.