摘要:
Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
摘要:
Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
摘要:
Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
摘要:
The drive current capability of a pull-down transistor and a pass transistor formed in a common active region may be adjusted on the basis of a strain-inducing mechanism, such as a stressed dielectric material and a stress memorization technique, thereby providing a simplified overall geometric configuration of the active region. Hence, static RAM cells may be formed on the basis of a minimum channel length with a simplified configuration of the active region, thereby avoiding significant yield losses as may be observed in sophisticated devices in which a pronounced variation of the transistor width may be used to adjust the ratio of the drive current capabilities for the pull-down transistor and the pass transistor.
摘要:
A contact element may be formed on the basis of a hard mask, which may be patterned on the basis of a first resist mask and on the basis of a second resist mask, to define an appropriate intersection area which may represent the final design dimensions of the contact element. Consequently, each of the resist masks may be formed on the basis of a photolithography process with less restrictive constraints, since at least one of the lateral dimensions may be selected as a non-critical dimension in each of the two resist masks.
摘要:
By incorporating a carbon species below the channel region of a P-channel transistor prior to the formation of the gate electrode structure, an efficient strain-inducing mechanism may provided, thereby enhancing performance of P-channel transistors. The position and size of the strain-inducing region may be determined on the basis of an implantation mask and respective implantation parameters, thereby providing a high degree of compatibility with conventional techniques, since the strain-inducing region may be incorporated at an early manufacturing stage, directly to respective “large area” contact elements.
摘要:
By incorporating a carbon species below the channel region of a P-channel transistor prior to the formation of the gate electrode structure, an efficient strain-inducing mechanism may provided, thereby enhancing performance of P-channel transistors. The position and size of the strain-inducing region may be determined on the basis of an implantation mask and respective implantation parameters, thereby providing a high degree of compatibility with conventional techniques, since the strain-inducing region may be incorporated at an early manufacturing stage, directly to respective “large area” contact elements.
摘要:
A contact element may be formed on the basis of a hard mask, which may be patterned on the basis of a first resist mask and on the basis of a second resist mask, to define an appropriate intersection area which may represent the final design dimensions of the contact element. Consequently, each of the resist masks may be formed on the basis of a photolithography process with less restrictive constraints, since at least one of the lateral dimensions may be selected as a non-critical dimension in each of the two resist masks.
摘要:
Threshold variability in advanced transistor elements, as well as increased leakage currents, may be reduced by incorporating a barrier material in a polysilicon gate electrode. The barrier material results in a well-controllable and well-defined metal silicide in the polysilicon gate electrode during the silicidation sequence and during the further processing by significantly reducing the diffusion of a metal species, such as nickel, into the vicinity of the gate dielectric material.
摘要:
In an SOI semiconductor device, substrate diodes may be formed on the basis of a superior design of the contact level and the metallization layer, thereby avoiding the presence of metal lines connecting to both diode electrodes in the critical substrate diode area. To this end, contact trenches may be provided so as to locally connect one type of diode electrodes within the contact level. Consequently, additional process steps for planarizing the surface topography upon forming the contact level may be avoided.