Abstract:
Some embodiments provide a queue management system that efficiently and dynamically manages multiple queues that process traffic to and from multiple virtual machines (VMs) executing on a host. This system manages the queues by (1) breaking up the queues into different priority pools with the higher priority pools reserved for particular types of traffic or VM (e.g., traffic for VMs that need low latency), (2) dynamically adjusting the number of queues in each pool (i.e., dynamically adjusting the size of the pools), (3) dynamically reassigning a VM to a new queue based on one or more optimization criteria (e.g., criteria relating to the underutilization or overutilization of the queue).
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
Systems and methods for preferentially assigning virtual machines (VMs) on a particular NUMA node with network queues on the same NUMA node are described. A load balancer process on a host assigns multiple VMs to network queues. The assignment of the VMs to a network queues is performed with a bias toward assigning VMs using a particular NUMA node to network queues on the same NUMA node. A scheduler on the host assigns VMs to NUMA nodes. The scheduler is biased toward assigning VMs to the same NUMA node as the PNIC and/or the same NUMA node as a network queue assigned to the VM.
Abstract:
Systems and methods for preferentially assigning virtual machines (VMs) on a particular NUMA node with network queues on the same NUMA node are described. A load balancer process on a host assigns multiple VMs to network queues. The assignment of the VMs to a network queues is performed with a bias toward assigning VMs using a particular NUMA node to network queues on the same NUMA node. A scheduler on the host assigns VMs to NUMA nodes. The scheduler is biased toward assigning VMs to the same NUMA node as the PNIC and/or the same NUMA node as a network queue assigned to the VM.
Abstract:
The disclosure herein describes a computer system that facilitates multi-core processing of VXLAN encapsulated packets. A VXLAN encapsulated packet typically contains an outer Ethernet header, an outer IP header, an outer UDP header, and an inner Ethernet header. The computer system hosts virtualization software which includes a virtual switch, a VXLAN module, and a load balancer. The load balancer monitors a port on the virtual switch. This port is dedicated to receiving VXLAN encapsulated packets and can be referred to as a VXLAN VMKNIC port. When the traffic statistics on the VXLAN VMKNIC port surpasses a predetermined threshold, the load balancer can instruct the physical network interface to allocate a number of receiver side scaling (RSS) queues. In turn, the physical network interface can store received VXLAN encapsulated packets in a number of RSS receive queues which facilitates multi-core processing of the received encapsulated packets.
Abstract:
Systems and methods for preferentially assigning virtual machines (VMs) on a particular NUMA node with network queues on the same NUMA node are described. A load balancer process on a host assigns multiple VMs to network queues. The assignment of the VMs to a network queues is performed with a bias toward assigning VMs using a particular NUMA node to network queues on the same NUMA node. A scheduler on the host assigns VMs to NUMA nodes. The scheduler is biased toward assigning VMs to the same NUMA node as the PNIC and/or the same NUMA node as a network queue assigned to the VM.
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
Some embodiments provide a queue management system that efficiently and dynamically manages multiple queues that process traffic to and from multiple virtual machines (VMs) executing on a host. This system manages the queues by (1) breaking up the queues into different priority pools with the higher priority pools reserved for particular types of traffic or VM (e.g., traffic for VMs that need low latency), (2) dynamically adjusting the number of queues in each pool (i.e., dynamically adjusting the size of the pools), (3) dynamically reassigning a VM to a new queue based on one or more optimization criteria (e.g., criteria relating to the underutilization or overutilization of the queue).