摘要:
Multiple clock circuits are connected by phase detector circuits to generate and synchronize local clock signals. For example, a clock distribution circuit includes a first clock circuit that is configured to generate a first clock signal in response to a first error signal, and a second clock circuit that is configured to generate a second clock signal in response to the first error signal. A first phase detector circuit connects the first clock circuit to the second clock circuit and is configured to generate the first error signal in response to the first and the second clock signals.
摘要:
A digital circuit includes a plurality of arbiters, each arbiter having first and second input ports and an output port at which is provided an arbiter output signal. Each first input of the plurality of arbiters is connected to a first common line and each second input of the plurality of arbiters is connected to a second common line. The digital circuit further includes a decision circuit, having a plurality of inputs and an output, with each of the inputs of the decision circuit coupled to a corresponding one of the output of the plurality of arbiters. The decision circuit provides an output signal indicative of the time difference between a signal fed to the first common line and a signal fed to the second common line. With such an arrangement, phase jitter or timing jitter in a clock network can be measured with relatively high resolution and the system cam resolve cycle-by-cycle jitter with a predetermined resolution.
摘要:
An RFID tag is configured to adjust its current clock frequency to conserve tag power while receiving a reader signal and/or backscattering a signal. The tag may determine whether to adjust its current clock frequency based on one or more timing parameters, which may be determined from a reader command and/or from a signal to be backscattered. The counting rate and/or limit of a tag counter and/or the power supplied to a tag component may also be adjusted. The current tag clock frequency may be adjusted during the signal reception/backscattering process and optionally restored once the process is completed.
摘要:
An RFID tag has a fuse that is adapted to store configuration data in a way that survives loss of power. The fuse can be one time programmable or many times programmable, and be implemented with a non-volatile memory. The configuration data becomes available to an operational component of the tag, such as at power up, controlling its performance.
摘要:
An RFID tag has a fuse that is adapted to store configuration data in a way that survives loss of power. The fuse can be one time programmable or many times programmable, and be implemented with a non-volatile memory. The configuration data becomes available to an operational component of the tag, such as at power up, controlling its performance.
摘要:
Feasibility of a requested action by a reader is predetermined in an RFID tag based on an available tag power level. A pretest that is designed to consume artificially high levels of power is performed and the power level monitored to determine if a preset condition is met. The pretest may include activation of selected components such as a memory and associated support circuitry. If the preset condition is not met, the requested action is aborted and an error message transmitted to the reader.
摘要:
A method of calibrating an oscillator within a Radio-Frequency Identification (RFID) tag includes storing a plurality of calibration values within a memory structure. Each of the calibration values corresponds to a respective oscillation frequency of the oscillator. A selected calibration value is selected from the plurality of calibration values stored, according to a first selection criterion. The oscillator is then calibrated in accordance with the selected calibration value.
摘要:
Mixing, modulation and demodulation using the nonlinear properties of microelectromechanical resonators and filters are described. Mixing followed by filtering is implemented using microelectromechanical filters with nonlinear input transducers. AM modulation is implemented by passing a carrier signal through the output transducer of a microelectromechanical filter. FM and FSK demodulation is accomplished using parallel banks of microelectromechanical filters. The invention can be implemented using integrated circuit technology.
摘要:
Two floating gate devices are arranged in a redundant configuration in a non-volatile memory (NVM) such that stress induced leakage current (SILC) or other failures do not result in a complete loss of memory storage. The redundant NVM may be arranged as a series configuration, a parallel configuration, a single-ended device, a differential device, a simple logic circuit function, a complex logic circuit function, and/or as part of an RFID tag system.
摘要:
An integrated circuit includes an internal resistance (RINT) and a compensation circuit coupled to adjust a slice level specified by a slice signal to a compensated slice level according to a difference between the internal resistance (RINT) and a known resistance (REXT). A reference voltage is coupled to the internal resistance to generate an internal current and is coupled to the known resistance to generate a known current. The compensated slice level is determined according to the internal current and the known current. The compensated slice level may be generated using an analog to digital converter coupled to a digital to analog converter that scale original slice signal based on the internal and known currents.
摘要翻译:集成电路包括内部电阻(R INT1)和补偿电路,该补偿电路被耦合以根据内部电阻(R INT SUB>)和已知电阻(R EXT SUB>)。 参考电压耦合到内部电阻以产生内部电流并且耦合到已知电阻以产生已知电流。 补偿限幅电平根据内部电流和已知电流来确定。 可以使用耦合到数模转换器的模数转换器来生成补偿限幅电平,该转换器基于内部和已知电流来缩放原始限幅信号。