摘要:
As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
摘要:
A method for the selective implantation of a workpiece is disclosed. In place of conventional photoresist, a two layer structure is used. The first layer, referred to as the protective layer, is applied directly to the workpiece and protects the workpiece from harmful etching processes. Additionally, the protective layer has limited ability to stop ions from impacting the workpiece. The second layer, referred to as the blocking layer, which is formed on a portion of the protective layer, is used to block ions from impacting the underlying workpiece. Advantageously, the blocking layer may be selectively etched without affecting the protective layer. Additionally, the protective layer can be removed without affecting the underlying workpiece. Through the use of this two layer technique, high temperature selective implants may be performed on a variety of different semiconductor devices.
摘要:
As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
摘要:
Various methods for implanting dopant ions into a three dimensional feature of a semiconductor wafer are disclosed. The implant temperature may be varied to insure that the three dimensional feature, after implant, has a crystalline inner core, which is surrounded by an amorphized surface layer. The crystalline core provides a template from which the crystalline structure for the rest of the feature can be regrown. In some embodiments, the implant energy and the implant temperature may each be modified to achieve the desired crystalline inner core with the surrounding amorphized surface layer.
摘要:
As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
摘要:
A method of doping the polycrystalline channel in a vertical FLASH device is disclosed. This method uses a plurality of high energy ion implants to dope the channel at various depths of the channel. In some embodiments, these ion implants are performed at an angle offset from the normal direction, such that the implanted ions pass through at least a portion of the surrounding ONO stack. By passing through the ONO stack, the distribution of ranges reached by each ion may differ from that created by a vertical implant.
摘要:
A method may include providing a silicon-on-insulator (SOI) substrate, the SOI substrate comprising an insulator layer and a silicon layer. The silicon layer may be disposed on the insulator layer, where the silicon layer comprises a first silicon thickness variation. The method may include forming an oxide layer on the silicon layer, where the oxide layer has a uniform thickness. The method may include selectively etching the oxide layer on the silicon layer, wherein the oxide layer comprises a first non-uniform oxide thickness. After thermal processing of the SOI substrate in an oxygen ambient, the non-uniform oxide thickness may be configured to generate a second silicon thickness variation in the silicon layer, less than the first silicon thickness variation.
摘要:
A method may include providing a silicon-on-insulator (SOI) substrate, the SOI substrate comprising an insulator layer and a silicon layer. The silicon layer may be disposed on the insulator layer, where the silicon layer comprises a first silicon thickness variation. The method may include forming an oxide layer on the silicon layer, where the oxide layer has a uniform thickness. The method may include selectively etching the oxide layer on the silicon layer, wherein the oxide layer comprises a first non-uniform oxide thickness. After thermal processing of the SOI substrate in an oxygen ambient, the non-uniform oxide thickness may be configured to generate a second silicon thickness variation in the silicon layer, less than the first silicon thickness variation.
摘要:
As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
摘要:
A method for the selective implantation of a workpiece is disclosed. In place of conventional photoresist, a two layer structure is used. The first layer, referred to as the protective layer, is applied directly to the workpiece and protects the workpiece from harmful etching processes. Additionally, the protective layer has limited ability to stop ions from impacting the workpiece. The second layer, referred to as the blocking layer, which is formed on a portion of the protective layer, is used to block ions from impacting the underlying workpiece. Advantageously, the blocking layer may be selectively etched without affecting the protective layer. Additionally, the protective layer can be removed without affecting the underlying workpiece. Through the use of this two layer technique, high temperature selective implants may be performed on a variety of different semiconductor devices.