摘要:
Methods for processing a substrate with a boron rich film are provided. A patterned layer of boron rich material is deposited on a substrate and can be used as an etch stop. By varying the chemical composition, the selectivity and etch rate of the boron rich material can be optimized for different etch chemistries. The boron rich materials can be deposited over a layer stack substrate in multiple layers and etched in a pattern. The exposed layer stack can then be etched with multiple etch chemistries. Each of the boron rich layers can have a different chemical composition that is optimized for the multiple etch chemistries.
摘要:
Methods for processing a substrate with a boron rich film are provided. A patterned layer of boron rich material is deposited on a substrate and can be used as an etch stop. By varying the chemical composition, the selectivity and etch rate of the boron rich material can be optimized for different etch chemistries. The boron rich materials can be deposited over a layer stack substrate in multiple layers and etched in a pattern. The exposed layer stack can then be etched with multiple etch chemistries. Each of the boron rich layers can have a different chemical composition that is optimized for the multiple etch chemistries.
摘要:
Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with some embodiments, a deposited silicon nitride film is exposed to curing with plasma and ultraviolet (UV) radiation, thereby helping remove hydrogen from the film and increasing film stress. In accordance with other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
摘要:
A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
摘要:
Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
摘要:
A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
摘要:
Provided are methods post deposition treatment of films comprising SiN. Certain methods pertain to providing a film comprising SiN; and exposing the film to an inductively coupled plasma, capacitively coupled plasma or a microwave plasma to provide a treated film with a modulated film stress and/or wet etch rate in dilute HF. Certain other methods comprise depositing a PEALD SiN film followed by exposure to a plasma nitridation process or a UV treatment to provide a treated film.
摘要:
Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
摘要:
Provided are methods of for deposition of SiN films via PEALD processes. Certain methods pertain to exposing a substrate surface to a silicon precursor to provide a silicon precursor at the substrate surface; purging excess silicon precursor; exposing the substrate surface to an ionized reducing agent; and purging excess ionized reducing agent to provide a film comprising SiN, wherein the substrate has a temperature of 23° C. to about 550° C.
摘要:
A method for the removal of copper oxide from a copper and dielectric containing structure of a semiconductor chip is provided. The copper and dielectric containing structure may be planarized by chemical mechanical planarization (CMP) and treated by the method to remove copper oxide and CMP residues. Annealing in a hydrogen (H2) gas and ultraviolet (UV) environment removes copper oxide, and a pulsed ammonia plasma removes CMP residues.