摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell is disclosed. The platinum layer of the lower electrode is formed such that it adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
A deposition method includes positioning a substrate within a deposition chamber defined at least in part by chamber walls. At least one of the chamber walls comprises a chamber surface having a plurality of purge gas inlets to the chamber therein. A process gas is provided over the substrate effective to deposit a layer onto the substrate. During such providing, a material adheres to the chamber surface. Reactive purge gas is emitted to the deposition chamber from the purge gas inlets effective to form a reactive gas curtain over the chamber surface and away from the substrate, with such reactive gas reacting with such adhering material. Further implementations are contemplated.
摘要:
A method of forming a capacitor includes forming a first conductive capacitor electrode layer over a substrate. The first electrode layer has an outer surface comprising a noble metal in at least one of elemental and alloy forms. A gaseous mixture comprising a metallorganic deposition precursor and an organic solvent is fed to the outer surface under conditions effective to deposit a capacitor dielectric layer onto the outer surface. A conductive capacitor electrode layer is formed over the capacitor dielectric layer. A method of forming an electronic device includes forming a conductive layer over a substrate. The conductive layer has an outer surface comprising a noble metal in at least one of elemental and alloy forms. A gaseous mixture comprising a metallorganic deposition precursor and an organic solvent is fed to the outer surface under conditions effective to deposit a dielectric layer onto the outer surface.
摘要:
The invention includes an atomic layer deposition method of forming a layer of a deposited composition on a substrate. The method includes positioning a semiconductor substrate within an atomic layer deposition chamber. On the substrate, an intermediate composition monolayer is formed, followed by a desired deposited composition from reaction with the intermediate composition, collectively from flowing multiple different composition deposition precursors to the substrate within the deposition chamber. A material adheres to a chamber internal component surface from such sequentially forming. After such sequentially forming, a reactive gas flows to the chamber which is different in composition from the multiple different deposition precursors and which is effective to react with such adhering material. After the reactive gas flowing, such sequentially forming is repeated. Further implementations are contemplated.
摘要:
A deposition method includes positioning a substrate within a deposition chamber defined at least in part by chamber walls. At least one of the chamber walls comprises a chamber surface having a plurality of purge gas inlets to the chamber therein. A process gas is provided over the substrate effective to deposit a layer onto the substrate. During such providing, a material adheres to the chamber surface. Reactive purge gas is emitted to the deposition chamber from the purge gas inlets effective to form a reactive gas curtain over the chamber surface and away from the substrate, with such reactive gas reacting with such adhering material. Further implementations are contemplated.
摘要:
The invention includes an atomic layer deposition method of forming a layer of a deposited composition on a substrate. The method includes positioning a semiconductor substrate within an atomic layer deposition chamber. On the substrate, an intermediate composition monolayer is formed, followed by a desired deposited composition from reaction with the intermediate composition, collectively from flowing multiple different composition deposition precursors to the substrate within the deposition chamber. A material adheres to a chamber internal component surface from such sequentially forming. After such sequentially forming, a reactive gas flows to the chamber which is different in composition from the multiple different deposition precursors and which is effective to react with such adhering material. After the reactive gas flowing, such sequentially forming is repeated. Further implementations are contemplated.