Abstract:
In one embodiment, the present invention includes multiple gain stages to receive and amplify a differential input signal at different common mode voltages. The stages each may include a pair of linear NMOS gain transistors coupled to a primary coil of a given output transformer. One of the stages may include commonly coupled terminals coupled to a center tap of the primary coil of an output transformer of another stage, and a supply current provided to one of the stages is re-used for the other stage(s).
Abstract:
In one embodiment, the present invention includes an apparatus having at least two gain stages to receive incoming signals and to output amplified signals, along with multiple regulators. More specifically, a linear regulator can be coupled to the first gain stage to provide a first regulated voltage to the first gain stage, and a switching regulator coupled to the second gain stage to provide a second regulated voltage to the second gain stage.
Abstract:
In one implementation, a power amplifier may include a gain device to receive an input signal and to output an amplified signal, and a compensation device coupled to the gain device to compensate for a change in a capacitance of the gain device occurring due to a change in the input signal. The power amplifier may be formed using a complementary metal oxide semiconductor (CMOS) process.
Abstract:
Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry. Automatic frequency control (AFC) circuitry may be integrated with other components of RF circuitry and may generate frequency control signals for the frequency modification circuitry based on, for example, a signal received from a temperature sensor. Digital-to-analog converter (DAC) circuitry may be integrated with other components of RF circuitry to enable all-digital frequency control communications from baseband processor circuitry to RF circuitry.
Abstract:
Embodiments are directed to capacitance compensation via a compensation device coupled to a gain device to compensate for a capacitance change occurring due to an input signal change, along with a controller coupled to the compensation device to receive the input signal and to control an amount of compensation based on the input signal. In some embodiments, banks may be formed of multiple compensation devices, where each of the banks has a different size and is coupled to receive a different set of bias voltages.
Abstract:
In one embodiment, a method includes generating a current that is proportional to a mobility and an oxide capacitance of a tracking device and independent of a threshold voltage variation of the tracking device, generating a voltage from the current, and providing the voltage as at least part of a bias voltage for another device. In one embodiment, this other device may be a compensation circuit coupled to a main device to compensate for capacitance non-linearity of the main device.
Abstract:
In one implementation, the present invention includes a diode device to receive an incoming radio frequency (RF) signal to be amplified in a gain device of an amplifier and to provide a pre-distorted signal. Based on this pre-distorted signal, the gain device can output an amplified RF signal having substantial linearity to the incoming RF signal.
Abstract:
A system comprising first interface circuitry that includes a first input pad of first receiver circuitry, and control circuitry configured to operate the first interface circuitry in a first mode to prevent the first receiver circuitry from receiving a first signal using the first input pad and a second mode to allow the first receiver circuitry to receive a second signal using the first input pad is provided.
Abstract:
In one implementation, the present invention includes a diode device to receive an incoming radio frequency (RF) signal to be amplified in a gain device of an amplifier and to provide a pre-distorted signal. Based on this pre-distorted signal, the gain device can output an amplified RF signal having substantial linearity to the incoming RF signal.
Abstract:
In one embodiment, the present invention includes multiple gain stages and an output network coupled to the gain stages. Each of the gain stages can be independently controlled to amplify a radio frequency (RF) signal to an output power level for transmission from a mobile wireless device. When controlled to be inactive, at least one of the gain stages can be placed into a low impedance state.