摘要:
A crystal-pulling apparatus for pulling and growing a monocrystalline silicon ingot comprises a quartz crucible placed in a chamber and containing a silicon melt from which a monocrystalline silicon ingot will be pulled, a graphite crucible container to support the quartz crucible by surrounding the outer circumferential surface and external base surface of crucible, and a heater provided around the outer circumferential surface of the crucible container to heat the silicon melt. This apparatus further comprises a spacer having a top surface whose area is smaller than the base area of the quartz crucible and having a melting point higher than that of silicon, is inserted between the base of the quartz crucible and the base of the crucible container while the monocrystalline silicon ingot is pulled. According to this invention, it is possible to obtain an N-type monocrystalline silicon ingot heavily doped with impurities and having a low resistivity in which the oxygen concentration is desirably controlled, or it is possible to obtain a monocrystalline silicon ingot of which the seed end retains an oxygen concentration determined by natural equilibrium conditions, while the cylindrical portion and tail end contain a relatively constant oxygen concentration, being relieved of a sharp fall in oxygen supply which is observed in a conventional apparatus.
摘要:
An enhanced n+ silicon material for epitaxial substrates and a method for producing it are described. The enhanced material leads to improved gettering characteristics of n/n+ epitaxial wafers based on these substrates. The method for preparing such n+ silicon material includes applying a co-doping of carbon to the usual n dopant in the silicon melt, before growing respective CZ crystals. This improves yield of enhanced n+ silicon material in crystal growing and ultimately leads to device yield stabilization or improvement when such n/n+ epitaxial wafers are applied in device manufacturing.
摘要翻译:描述了用于外延衬底的增强的n +硅材料及其制造方法。 增强的材料导致基于这些衬底的n / n +外延晶片的改善的吸杂特性。 制备这种n +硅材料的方法包括在生长各自的CZ晶体之前,将碳共掺杂到硅熔体中的通常的n掺杂剂中。 这提高了晶体生长中增强的n +硅材料的产率,并且当这种n / n +外延晶片应用于器件制造时,最终导致器件产量稳定或改进。
摘要:
A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.
摘要:
A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.