摘要:
The diffuse reflectivity of an LED source is utilized to recycle some of its emission, thereby enabling a luminaire to escape the étendue limit. Retroreflectors intercept the rays destined for the outer part of the luminaire aperture, which can then be truncated. The resulting smaller aperture has the same beam-width as the full original, albeit with lesser flux due to recycling losses. A reduction to half the original area is possible.
摘要:
An optoelectrical device, which may be a luminaire or a photovoltaic concentrator, has a transparent cover plate. A target with an optoelectrical transducer that produces waste heat in operation is mounted at an inside face of the transparent cover plate. A primary mirror reflects light between being concentrated on the target and passing generally collimated through the cover plate. A heat spreader is in thermal contact with the target. The heat spreader has heat conductors that thermally connect the target with the inside surface of the cover plate. The heat conductors may be arms extending radially outwards, and may be straight, zigzag, or branching. An array of targets may be mounted on a common cover plate, and their heat spreaders may be continuous from target to target.
摘要:
An optical manifold for efficiently combining a plurality of LED outputs into a single, substantially homogeneous output, in a small, cost-effective package. The optical manifolds can be used to combine multiple LEDs of the same color and provide a high intensity output aperture with very high uniformity and sharp borders, or they can be used to generate a multiwavelength output, such as red, green, and blue LEDs that are combined to generate white light. Embodiments are also disclosed that use a single or multiple LEDs and a remote phosphor and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. The optical manifolds are designed to alleviate substantial luminance inhomogeneities inherent to LEDs. The optical manifold utilizes principles of non-imaging optics to transform light and provide directed, substantially uniform light sources.
摘要:
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
摘要:
Optical systems are described that have at least one source of a beam of blue light with divergence under 15°. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15°. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15°, 22°, and 45°. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.
摘要:
The diffuse reflectivity of an LED source is utilized to recycle some of its emission, thereby enabling a luminaire to escape the étendue limit. Retroreflectors intercept the rays destined for the outer part of the luminaire aperture, which can then be truncated. The resulting smaller aperture has the same beam-width as the full original, albeit with lesser flux due to recycling losses. A reduction to half the original area is possible.
摘要:
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
摘要:
Some photovoltaic cells have a front face accepting incoming incident light and opaque gridlines overlying part of the front face, electrically bonded to the face, with upper reflective facets oblique to the plane of the front face and producing outgoing reflected light. An optical interface parallel to and in front of the front face transmits incoming light to the front face and to the gridlines and reflects back towards the front face by total internal reflection at least some of the outgoing reflected light. Some photovoltaic devices have a triple junction photovoltaic cell, a single junction photovoltaic cell, and a reflective surface arranged to distribute incoming light between the cells. The surface may be a frequency-selective mirror that apportions light so when the cells are in series the power produced, and preferably the photocurrent, is greater than if all the light fell on the triple junction cell alone.
摘要:
Some photovoltaic cells have a front face accepting incoming incident light and opaque gridlines overlying part of the front face, electrically bonded to the face, with upper reflective facets oblique to the plane of the front face and producing outgoing reflected light. An optical interface parallel to and in front of the front face transmits incoming light to the front face and to the gridlines and reflects back towards the front face by total internal reflection at least some of the outgoing reflected light. Some photovoltaic devices have a triple junction photovoltaic cell, a single junction photovoltaic cell, and a reflective surface arranged to distribute incoming light between the cells. The surface may be a frequency-selective mirror that apportions light so when the cells are in series the power produced, and preferably the photocurrent, is greater than if all the light fell on the triple junction cell alone.
摘要:
In one embodiment of a solar concentrator, a tailored aspheric lens augments the solar-concentrator performance of a concave mirror, widening its acceptance angle for easier solar tracking, making it more cost-competitive for ultra-large arrays. The molded-glass secondary lens also includes a short rod for reducing the peak concentration on a photovoltaic cell that is optically bonded to the end of the rod. The Simultaneous Multiple Surface method produces lens shapes suitable for a variety of medium and high concentrations by mirrored dishes. Besides the rotationally symmetric parabolic mirror itself, other aspheric deviations therefrom are described, including a free-form rectangular mirror that has its focal region at its edge.