摘要:
An air-fuel ratio detected by an air-fuel ratio sensor is periodically varied by executing a PI control. During the PI control, a time period in which the detected air-fuel ratio passes through a predetermined rich-side range is defined as a rich-side time constant, and a time period in which the detected air fuel ratio passes through a predetermined lean-side range is defined as a lean-side time constant. A rich-side time delay represents a time period in which an air-fuel correction amount is increasingly corrected to exceed a rich-side threshold, and a lean-side time delay represents a time period in which the air-fuel correction amount is decreasingly corrected to exceed a lean-side threshold. These time constants and time delays are compared with a determining value to diagnose degradation of an air-fuel ratio sensor.
摘要:
An air-fuel ratio detected by an air-fuel ratio sensor is periodically varied by executing a PI control. During the PI control, a time period in which the detected air-fuel ratio passes through a predetermined rich-side range is defined as a rich-side time constant, and a time period in which the detected air fuel ratio passes through a predetermined lean-side range is defined as a lean-side time constant. A rich-side time delay represents a time period in which an air-fuel correction amount is increasingly corrected to exceed a rich-side threshold, and a lean-side time delay represents a time period in which the air-fuel correction amount is decreasingly corrected to exceed a lean-side threshold. These time constants and time delays are compared with a determining value to diagnose degradation of an air-fuel ratio sensor.
摘要:
An air-fuel ratio sensor monitor is provided which is designed to monitor reactive characteristics or response rates of an air-fuel ratio sensor when an air-fuel ratio of a mixture to an internal combustion engine is changing to a rich side and to a lean side. The monitored response rates are used in determining whether the sensor is failing or not, in determining the air-fuel ratio of the mixture accurately, or in air-fuel ratio control of the engine.
摘要:
An air-fuel ratio sensor monitor is provided which is designed to monitor reactive characteristics or response rates of an air-fuel ratio sensor when an air-fuel ratio of a mixture to an internal combustion engine is changing to a rich side and to a lean side. The monitored response rates are used in determining whether the sensor is failing or not, in determining the air-fuel ratio of the mixture accurately, or in air-fuel ratio control of the engine.
摘要:
An air-fuel ratio sensor monitor is provided which is designed to monitor reactive characteristics or response rates of an air-fuel ratio sensor when an air-fuel ratio of a mixture to an internal combustion engine is changing to a rich side and to a lean side. The monitored response rates are used in determining whether the sensor is failing or not, in determining the air-fuel ratio of the mixture accurately, or in air-fuel ratio control of the engine.
摘要:
An air-fuel ratio sensor monitor is provided which is designed to monitor reactive characteristics or response rates of an air-fuel ratio sensor when an air-fuel ratio of a mixture to an internal combustion engine is changing to a rich side and to a lean side. The monitored response rates are used in determining whether the sensor is failing or not, in determining the air-fuel ratio of the mixture accurately, or in air-fuel ratio control of the engine.
摘要:
In a fuel supply system employing a returnless fuel pipe arrangement, a relief valve is provided at a discharge side of a fuel pump. The relief valve is opened when fuel pressure in the fuel pipe arrangement becomes no less than a system protective pressure, so as to relieve the fuel pressure to protect the system. The relief valve is also arranged to be open when the fuel pressure in the fuel pipe arrangement becomes higher than a target fuel pressure by a predetermined value or when the fuel cut is performed. Thus, the fuel pressure in the fuel pipe arrangement is lowered. Thereafter, when the fuel pressure in the fuel pipe arrangement is lowered to a pressure near the target fuel pressure, the relief valve is arranged to be closed so that the fuel pressure in the fuel pipe arrangement is held substantially at the target fuel pressure.
摘要:
A controller is provided to an engine including a variable valve timing unit for manipulating a valve timing of an intake valve of the engine. The controller includes an idle-continuation determining unit for determining whether an idling operation of the engine is in a continued state. The controller further includes a torque reserve control unit for executing a torque reserve control to advance the valve timing and increase an intake air quantity of the engine within a combustion limit of the engine when the idle-continuation determining unit determines that the idling operation is in the continued state. The controller further includes a torque correction unit for executing a torque correction control to retard the valve timing in the torque reserve control in at least one of conditions where: an auxiliary device exerts a load; the load is increased; and a vehicle starts moving.
摘要:
When the output of the AFR ratio sensor is stable in a steady operating state, the amount of fuel is increased by step inputting to detect a point where the gradient of change in the sensor output exceeds a threshold value as a point of start of change. The time from the timing of increasing the fuel until the point of start of change is detected as a dead time. A response time is calculated until the amount of change in the sensor output reaches a predetermined ratio of the amount of change (AA−BA) of up to the steady value AA of the sensor output after the amount of the fuel is increased from the steady value BA of the sensor output before the amount of the fuel is increased. The fail condition in the AFR ratio sensor is determined based on the dead time TA and the response time TB.
摘要:
A fuel transfer model of a fuel supply system is used to set and control the fuel pump of a return less fuel injection system. The model simulates characteristics of the fuel pump, fuel pressure transfer delay of fuel supply conduits and fuel pressure variation characteristics such as caused by expansion and compression of the fuel supply conduit volume due to an elastic coefficient and the like. The fuel pump model simulates a torque applied to the fuel pump motor, inertia, and the relationships between pump rotational speed, fuel pressure and fuel pump discharge amounts. A compensation control arithmetic calculation model may be derived from inverse calculation based on this fuel transfer model. The compensating current obtained from such an arithmetic model provides compensation for control of the fuel pump by adding a first value obtained by waveform shaping (through a first differentiation of the fuel injection amount) and a second value obtained by waveform shaping (through a second differentiation of the fuel injection amount).