摘要:
An iteration method for computing a distribution of one or more properties within an object comprises defining a first mesh of the object, applying an excitation to the object, computing a response of the object to the applied excitation, obtaining a reference response of the object corresponding to the applied excitation, computing a distribution of one or more properties of the object, and updating at least a subset of the nodes of the first mesh to form an updated mesh of the object. The distribution of one or more properties of the object is computed using the computed response, the reference response, and the first mesh. The first mesh includes a plurality of nodes and elements. A connectivity relationship of the subset of the nodes in the updated mesh remains the same as in the first mesh.
摘要:
An iteration method for computing a distribution of one or more properties within an object comprises defining a first mesh of the object, applying an excitation to the object, computing a response of the object to the applied excitation, obtaining a reference response of the object corresponding to the applied excitation, computing a distribution of one or more properties of the object, and updating at least a subset of the nodes of the first mesh to form an updated mesh of the object. The distribution of one or more properties of the object is computed using the computed response, the reference response, and the first mesh. The first mesh includes a plurality of nodes and elements. A connectivity relationship of the subset of the nodes in the updated mesh remains the same as in the first mesh.
摘要:
A method for determining parameters of a wind turbine is disclosed. The method may generally include receiving signals from at least one Micro Inertial Measurement Unit (MIMU) mounted on or within a component of the wind turbine and determining at least one parameter of the wind turbine based on the signals received from the at least one MIMU.
摘要:
Systems and methods obtain functional connectivity data in the whole brain to detect and predict brain disorders. This whole brain data is regionalized and then manipulated to derive functional connectivity data sets that can be used to show measured functional connectivity changes. This whole brain data may also be analyzed to determine changes in functional activity in both increased and decreased neural network connectivity. By identifying and then quantifying the functional connectivity differences between healthy and diseased subjects, a classification for individual subjects can be made.
摘要:
Systems and methods obtain functional connectivity data in the whole brain to detect and predict brain disorders. This whole brain data is regionalized and then manipulated to derive functional connectivity data sets that can be used to show measured functional connectivity changes. This whole brain data may also be analyzed to determine changes in functional activity in both increased and decreased neural network connectivity. By identifying and then quantifying the functional connectivity differences between healthy and diseased subjects, a classification for individual subjects can be made.