摘要:
An exemplary semiconductor device is described, which includes a semiconductor substrate having an active region and an isolation region. The active region has a first edge which interfaces with the isolation region. A gate structure formed on the semiconductor substrate. A spacer element abuts the gate structure and overlies the first edge. In an embodiment, the isolation region is an STI structure. An epitaxy region may be formed adjacent the spacer. In embodiments, this epitaxy region is facet-free.
摘要:
An exemplary semiconductor device is described, which includes a semiconductor substrate having an active region and an isolation region. The active region has a first edge which interfaces with the isolation region. A gate structure formed on the semiconductor substrate. A spacer element abuts the gate structure and overlies the first edge. In an embodiment, the isolation region is an STI structure. An epitaxy region may be formed adjacent the spacer. In embodiments, this epitaxy region is facet-free.
摘要:
A method for forming a high performance strained source-drain structure includes forming a gate structure on a substrate and forming a pocket implant region proximate to the gate structure. Spacers are formed adjacent to the gate structure. A dry etch forms a recess with a first contour; a wet etch enlarge the recess to a second contour; and a thermal etch enlarges the recess to a third contour. The source-drain structure is then formed in the recess having the third contour.
摘要:
A semiconductor device having a strained channel and a method of manufacture thereof is provided. The semiconductor device has a gate electrode formed over a channel recess. A first recess and a second recess formed on opposing sides of the gate electrode are filled with a stress-inducing material. The stress-inducing material extends into an area wherein source/drain extensions overlap an edge of the gate electrode. In an embodiment, sidewalls of the channel recess and/or the first and second recesses may be along {111} facet planes.
摘要:
A method for forming a high performance strained source-drain structure includes forming a gate structure on a substrate and forming a pocket implant region proximate to the gate structure. Spacers are formed adjacent to the gate structure. A dry etch forms a recess with a first contour; a wet etch enlarge the recess to a second contour; and a thermal etch enlarges the recess to a third contour. The source-drain structure is then formed in the recess having the third contour.
摘要:
A semiconductor device having a strained channel and a method of manufacture thereof is provided. The semiconductor device has a gate electrode formed over a channel recess. A first recess and a second recess formed on opposing sides of the gate electrode are filled with a stress-inducing material. The stress-inducing material extends into an area wherein source/drain extensions overlap an edge of the gate electrode. In an embodiment, sidewalls of the channel recess and/or the first and second recesses may be along {111} facet planes.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of an integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite to the LDD region.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a lightly doped source and drain (LDD) region that acts as an etch stop. The LDD region may act as an etch stop during an etching process implemented to form a recess in the substrate that defines a source and drain region of the device.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit devices. An exemplary integrated circuit device achieved by the method has a surface proximity of about 1 nm to about 3 nm and a tip depth of about 5 nm to about 10 nm. The integrated circuit device having such surface proximity and tip depth includes an epi source feature and an epi drain feature defined by a first facet and a second facet of a substrate in a first direction, such as a {111} crystallographic plane of the substrate, and a third facet of the substrate in a second direction, such as a { 100} crystallographic plane of the substrate.
摘要:
An integrated circuit device is disclosed. The disclosed device provides improved control over a surface proximity and tip depth of integrated circuit devices. An exemplary integrated circuit device disclosed herein has a surface proximity of about 1 nm to about 3 nm and a tip depth of about 5 nm to about 10 nm. The integrated circuit device having such surface proximity and tip depth includes an epi source feature and an epi drain feature defined by a first facet and a second facet of a substrate in a first direction, such as a {111} crystallographic plane of the substrate, and a third facet of the substrate in a second direction, such as a {100} crystallographic plane of the substrate.