摘要:
A power generating apparatus includes a rotating shaft, a hydraulic pump driven by the rotating shaft, a hydraulic motor driven by pressurized oil supplied from the hydraulic pump, and a generator coupled to the hydraulic motor. Each of the hydraulic pump and motor includes working chambers each defined by a cylinder and a piston, a high pressure manifold and a low pressure manifold. Each of the high and low pressure manifolds includes branch channels connected to the working chambers and a merging channel connected to a high or low pressure oil line. The branch channels are equipped with high or low pressures valves, joined together and merged into the merging channel.
摘要:
A valve assembly (1) operable to allow or prevent the flow of fluid to or from a working chamber of a fluid-operated machine, comprising radially spaced apart inner and outer annular valve seats (8, 15) defining an annular passage therebetween, a valve member comprising a sealing ring (21), and means (3, 7, 26, 25) for moving the valve member axially between a first position in which the sealing ring (21) is in seating engagement with the annular valve seats to close the annular passage to fluid flow therethrough and a second position in which the sealing ring (21) is spaced from the annular valve seats (8, 15) so that the annular passage is open to fluid flow therethrough. The valve assembly further comprises axially spaced apart first and second valve guide means (6) for guiding the valve member during axial movement between its first and second positions.
摘要:
A fluid-working machine has a plurality of working chambers, e.g. cylinders (11), of cyclically changing volume, a high-pressure fluid manifold (14) and a low-pressure fluid manifold (16), at least one valve (13, 15) linking each working chamber to each manifold, and electronic sequencing means (20) for operating said valves in timed relationship with the changing volume of each chamber (11), wherein the electronic sequencing means is arranged to operate the valves of each chamber in one of an idling mode, a partial mode in which only part of the usable volume of the chamber is used, and a full mode in which all of the usable volume of the chamber (11) is used, and the electronic sequencing means (20) is arranged to select the mode of each chamber on successive cycles so as to infinitely vary the time averaged effective flow rate of fluid through the machine.
摘要:
The present invention provides a cooling system such as employed in cooling a heat source and a transmission system having said cooling system integrated therewith. The cooling system further includes a pump for supplying hydraulic fluid under pressure to a motor for driving a fan employed in the cooling process. In operation, a controller initiates operation of the pump such as to supply hydraulic fluid to said motor only when needed, thereby to improve the efficiency and controllability of the cooling system.
摘要:
It is intended to provide a power generating apparatus of renewable energy type which obtains desired torque rapidly in response to changes of the renewable energy as well as a method of operation such an apparatus. The power generating device which generates power from a renewable energy source, includes a rotating shaft 8 driven by the renewable energy, a hydraulic pump 12 of variable displacement type driven by the rotating shaft 8, a hydraulic motor 14 driven by pressurized oil supplied from the hydraulic pump 12, a generator 20 coupled to the hydraulic motor 14, a high pressure oil line 16 through which a discharge side of the hydraulic pump 12 is in fluid communication with an intake side of the hydraulic motor 14, a pump demand determination unit 44 which determines a displacement demand Dp of the hydraulic pump based on a target torque Td of the hydraulic pump 12 and an oil pressure in the high pressure oil line 16 and a pump controller 46 which adjusts displacement of the hydraulic pump 12 to the determined displacement demand Dp.
摘要:
An object of the present invention is to provide a wind turbine generator system and an operation control method thereof, which has a superior operation efficiency and stability at a low wind speed and during the occurrence of a gust and is equipped with Ride Through function at Grid low voltage condition. The wind turbine generator comprises a hydraulic pump of a variable displacement type which is rotated by the main shaft, a hydraulic motor of a variable displacement type which is connected to the generator, and a high pressure oil line and a low pressure oil line which are arranged between the hydraulic pump and the hydraulic motor. An accumulator is connected to the high pressure oil line via an accumulator valve. ACC valve control unit controls opening and closing of the accumulator valve based on at least one of wind speed and the state of the grid.
摘要:
In view of the problems above, it is an object of the present invention is to provide a power generating apparatus of renewable energy type which can achieve a desired output of the hydraulic motor and a stable power generation regardless of changes of the renewable energy as well as a method of operation such an apparatus. The power generating apparatus which generates power from a renewable energy source, includes a rotating shaft 8 driven by the renewable energy, a hydraulic pump 12 of variable displacement type driven by the rotating shaft 8, a hydraulic motor 14 driven by pressurized oil supplied from the hydraulic pump 12, a generator 20 coupled to the hydraulic motor 14, a high pressure oil line 16 through which a discharge side of the hydraulic pump 12 is in communication with an intake side of the hydraulic motor 14, a low pressure oil line 18 through which an intake side of the hydraulic pump 12 is in communication with a discharge side of the hydraulic motor, a motor target output determination unit 45 which determines the target output of the hydraulic motor 14, POWERmotor based on the target output of the hydraulic pump, POWERpump, a motor demand output determination unit 46 which determines a displacement demand Dm of the hydraulic motor 14 based on the target output of the hydraulic motor 14, POWERmotor so that the rotation speed of the generator 20 is constant, and a motor controller 48 which adjust the displacement of the hydraulic motor to the displacement demand Dm.
摘要:
A wind turbine generator (100), or other energy extraction device, has a hydraulic circuit comprising a hydraulic pump (129) driven by a rotating shaft (125) and a hydraulic motor (131) driving an electricity generator (157), or other load. A high pressure manifold (133) extending between the pump and motor is in communication with an accumulator (145, 147, 149). A controller receives a control signal and regulates the displacement of working fluid by the hydraulic pump and the hydraulic motor relative to each other. Thus, power input through the rotating shaft and output to the load can be decoupled for at least a period of time and the energy output of energy extraction device can be varied, for example to smooth the total power output to an electricity grid (101), without compromising power input. A group of energy extraction devices can be controlled in concert to maximise power input while providing smooth power output. Individual electricity generators in different energy extraction devices can be switched on and off in concert to provide smooth power output while benefiting from the reduced energy losses that can be obtained by switching off electricity generators where possible.
摘要:
A wind turbine generator, or other energy extraction device, has a hydraulic circuit comprising a hydraulic pump driven by a rotating shaft and a hydraulic motor driving an electricity generator. When the electricity generator is switched off, it executes one or more pumping cycles to pressurise the high pressure manifold and therefore recover angular kinetic energy from the electricity generator rotor which can later be used to reaccelerate the electricity generator rotor to the correct operating speed for an electricity grid. Overall energy efficiency is increased and the minimum operating high pressure manifold pressure may be reduced as a result.
摘要:
A fluid-working machine has working chambers (4), each of which is connected to a fluid commutating means (2) which alternately connects the working chamber to either of two fluid manifolds (A, B). An electronically controlled valve (1) is inserted into the flow path between each chamber (4) and the commutating means. This valve is commanded by a controller (6) receiving an input signal of the phase angle of the shaft (5) of the machine or at least one electronic pulse per revolution which informs the controller that the shaft is passing a known phase angle. The valve (1) allows overriding of fixed mechanical commutation by closing the valve cyclically, synchronised with the angular position of the shaft (5). Thus the controller (6) is able to vary the time-averaged fluid flow into or out of the machine by varying the proportion of chambers (4) which are isolated from or connected to the mechanical commutating means (2), to control the torque, speed, and/or fluid flow into and out of the machine.