摘要:
Methods and circuits are presented for providing equalization, including decision feedback equalization (DFE), to high data-rate signals. Half-rate delay-chain circuitry produces delayed samples of an input signal using two or more delay-chain circuits operating at a fraction of the input signal data-rate. Two delay-chain circuits operating at one-half the input signal data-rate may be used. More generally, n delay-chain circuits operating at 1/n the input signal data-rate may be used. Multiplexer circuitry combines the outputs of the delay-chain circuits to produce an output signal including samples of the input signal at the input signal data-rate. Duplicate path DFE circuitry includes two paths used to provide DFE equalization while reducing the load of the DFE circuitry on the circuitry that precedes it. A first path produces delayed samples of a DFE signal, while a second path produces the DFE output signal from the delayed samples.
摘要:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
摘要:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
摘要:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
摘要:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
摘要:
Precision amplitude detection circuitry without pattern dependencies is provided that includes rectifier circuitry to output a rectified voltage signal and delay circuitry to send one or more delayed or phase-shifted versions of a differential signal input to the rectifier circuitry. The delayed versions of the differential signal input may be delayed in order to reduce or eliminate the dips in the input seen by the rectifier. This may help correct for low rectified voltage levels. The signal amplitude detection circuitry of the present invention may be incorporated on the input pin of any programmable logic resource and may be included in communication circuitry of a PLD. The precision amplitude detection circuitry may operate in the Gbps (gigabit per second) range.
摘要:
In high speed receiver circuitry (e.g., on a programmable logic device (PLD) or the like), decision feedback equalization (DFE) circuitry is used to at least partly cancel unwanted offset (e.g., from other elements of the receiver). The data input to the receiver is tristated; and then each DFE tap coefficient is varied in turn to find coefficient values that are associated with transitions between oscillation and non-oscillation of the receiver output signal. The coefficient values found in this way are used to select trial values. If the output signal of the receiver does not oscillate when these trial values are used, the process is repeated starting from these (or subsequent) trial values until a final set of trial values does allow oscillation of the receiver output signal.
摘要:
The various components of transceiver circuitry on an integrated circuit are put together in various ways for purposes of being supplied with power to help prevent noise propagation between the groups. In the case of multi-channel transceiver circuitry there can be various amounts of power supply sharing between similar groups in multiple channels.
摘要:
Methods and circuits for automatic adjustment of equalization are presented that improve the quality of equalization for input signals with varying amplitudes. The methods and circuits may be used in Decision Feedback Equalization (DFE) circuits to maintain a constant equalization boost amplitude despite variations in input signal amplitude. The equalization circuitry measures the amplitude of the equalization input signal and computes tap coefficients to maintain a desired level of boost amplitude. Tap coefficients may be automatically adjusted by the equalization circuitry.
摘要:
Wide range and dynamically reprogrammable CDR architecture recovers an embedded clock signal from serial input data with a wide range of operating frequencies. In order to support a wide range of data rates, the CDR architecture includes multiple operating parameters. These parameters include various pre/post divider settings, charge pump currents, loop-filter and bandwidth selections, and VCO gears. The parameters may be dynamically reprogrammed without powering down the circuitry or PLD. This allows the CDR circuitry to switch between various standards and protocols on-the-fly.