Unimolecular nanoparticles for efficient delivery of therapeutic RNA

    公开(公告)号:US11058644B2

    公开(公告)日:2021-07-13

    申请号:US15819424

    申请日:2017-11-21

    Abstract: Provided are a unimolecular nanoparticle, a composition thereof, and methods of use thereof, and includes 1) a dendritic polymer having a molecular weight of about 500-120,000 Da and terminating in hydroxyl, amino or carboxylic acid groups; 2) cationic polymers attached to at least a majority of the terminating groups of the dendritic polymer via a pH-sensitive linker, wherein each cationic polymer comprises a polymeric backbone attached to cationic functional groups and to weakly basic groups by disulfide bonds, wherein the molar ratio of cationic functional groups to weakly basic groups ranges from 1:1-5:1, and has a molecular weight from about 1,000-5,000 Da; and 3) poly(ethylene glycol) attached to a plurality of cationic polymers and having a terminal group selected from a targeting ligand, OH, O-alkyl, NH2, biotin, or a dye, wherein the terminal group of at least one poly(ethylene glycol) is having a molecular weight of about 1,000-15,000 Da.

    Perivascular drug delivery system
    6.
    发明授权

    公开(公告)号:US10668017B2

    公开(公告)日:2020-06-02

    申请号:US15674293

    申请日:2017-08-10

    Abstract: The present technology provide compositions that are drug delivery systems for the sustained release of anti-stenotic drugs for the treatment and prevention of occlusion of blood vessels, particularly after perivascular surgery. The compositions include a hydrogel, unimolecular micelles dispersed within the hydrogel, and an effective amount of anti-stenotic drug dispersed within the unimolecular micelle. The hydrogel may be a di-or tri-block copolymer comprising one block of poly(ethylene glycol) (PEG) and one or two blocks of poly(lactic-co-glycolic acid) (PLGA). The unimolecular micelle may include three domains: a dendritic polymer core, hydrophobic block polymers (e.g., PVL, PVCL, and/or PCL) attached to the core and PEG attached to the hydrophobic block polymers.

Patent Agency Ranking