摘要:
A fuselage cell structure for an aircraft includes at least two skin panels including at least one double shell skin panel and at least one monolithic skin panel. At least one longitudinal brace or a transverse brace is disposed so as to form at least one of longitudinal seam or a transverse seam between the double shell skin panel and the monolithic skin panel. The fuselage cell structure includes at least one of a longitudinal bracket and a load transfer point. The longitudinal bracket is disposed in a region of the longitudinal seam and includes a first and a second longitudinal flanges disposed offset with respect to one another and connected by a web. The load transfer point is disposed in a region of the transverse seam so as to connect the longitudinal brace disposed on the monolithic skin panel to the double shell skin panel.
摘要:
A fuselage cell structure for an aircraft includes at least two skin panels including at least one double shell skin panel and at least one monolithic skin panel. At least one brace which is at least one of a longitudinal and a transverse brace is disposed so as to form at least one of a longitudinal seam and a transverse seam between the at least one double shell skin panel and the at least one monolithic skin panel. The fuselage cell structure includes at least one of a longitudinal bracket and a load transfer point. The longitudinal bracket is disposed in a region of the longitudinal seam and includes a first and a second longitudinal flange that are disposed offset with respect to one another and connected by a web. The load transfer point is disposed in a region of the transverse seam so as to connect the longitudinal brace disposed on the at least one monolithic skin panel to the at least one double shell skin panel.
摘要:
A window element for a double-shell skin field of an aircraft fuselage cell includes a window frame having a window module disposed in the frame, wherein the frame is disposed in an opening of the double-shell skin field, and wherein the frame is connected to the double-shell skin field by a surrounding embrasure profile positioned against a core structure of the skin field at least in some regions, wherein the core structure includes an inner and an outer covering layer.
摘要:
A window element for a double-shell skin field of an aircraft fuselage cell includes a window frame having a window module disposed in the frame, wherein the frame is disposed in an opening of the double-shell skin field, and wherein the frame is connected to the double-shell skin field by a surrounding embrasure profile positioned against a core structure of the skin field at least in some regions, wherein the core structure includes an inner and an outer covering layer.
摘要:
The present invention provides an arrangement, in particular for an aircraft or spacecraft, comprising an outer skin portion, the outside of which comes into contact with the atmosphere; a facing portion, which is arranged on the inside of the outer skin portion; a gap which is formed between the outer skin portion and the facing portion; and a device by means of which an airstream can be passed through the gap at a sufficient temperature to displace the dew point into the outer skin portion.
摘要:
The invention relates to a method for manufacturing flat, single or double curved core composites 1, 23 with at least one folded honeycomb core 4, 19. Prior to applying the initially not yet hardened cover layers 2, 3, 13, 22 a curable and later removable core filler material 15, 16 is introduced into full-length drainage-enabling channels 5, 6 of the folded honeycomb core 4, 19 in order to prevent telegraphing of the cover layers 2, 3, 13, 22 into the channels 5, 6 of the folded honeycomb core when arranging and/or hardening the cover layers 2, 3, 13, 22 and to produce edge-free and polygon-free surfaces of the core composite 1, 23. The core composites 1, 23 made according to the method have optimum structural mechanical properties, an ideal surface quality from the aerodynamic and aesthetic point of view, whereby a direct reprocessing of the core composites 1, 23 is possible without the need for further time and cost-intensive as well as in some circumstances weight-increasing finishing steps. With the method it is possible to manufacture in particular one-piece fuselage sections with wound core composites 1, 23 with a folded honeycomb 4, 19 as well as shell segments with laid cover layers 2, 3, 13, 22 for longitudinally divided (segmented) fuselage sections for large aircraft.
摘要:
The invention relates to a method for manufacturing a core composite (1, 20, 26) having a folded honeycomb core (2, 21, 29) provided on both sides with cover layers (3, 4, 22, 23, 27, 28) wherein the folded honeycomb core (2, 21, 29) has a number of drainage-enabling channels (5). First a core filler material (16, 17) is introduced into the folded honeycomb core (2, 21, 29) at least in some areas in order to provide the filler material with sufficient stability for the subsequent sewing process. The cover layers (3, 4, 22, 23, 27, 28) which are not yet impregnated with a curable plastics material are then placed on the folded honeycomb core (2, 21, 29) and stitched to this along the base lines (6 to 8) and/or apex lines (9, 10) at least in some sections by means of a sewing thread (19). The infiltration of the overall structure with a curable plastics material is then carried out followed by hardening by applying pressure and/or temperature. The core filler material (16, 17) can to complete the process be removed again completely from the folded honeycomb core (2, 21, 29) by being dissolved and washed out or by melting and flowing out. Delamination of the cover layers (3, 4, 22, 23, 27, 28) from the folded honeycomb core (2, 21, 29) is prevented by the stitching so that core composites (1, 20, 26) manufactured by the method according to the invention can be used in the primary structure of aircraft.The invention further relates to a core composite (1, 20, 26) manufactured according to the provisions of the method.
摘要:
The present invention provides a fuselage structure for an aircraft or spacecraft with an outer skin. The fuselage structure comprises a rib element for stiffening the outer skin and ad cross member element. Here the rib element is bent in the shape of an arc to correspond to an inner contour of the outer skin. The cross member element connects two arc sections of the rib element transversely to each other. The cross member element has a higher strength than the rib element. From another point of view the invention provides an aircraft with such a fuselage structure.
摘要:
The present invention provides an arrangement, in particular for an aircraft or spacecraft, comprising an outer skin portion, the outside of which comes into contact with the atmosphere; a facing portion, which is arranged on the inside of the outer skin portion; a gap which is formed between the outer skin portion and the facing portion; and a device by means of which an airstream can be passed through the gap at a sufficient temperature to displace the dew point into the outer skin portion.
摘要:
The invention relates to a method for manufacturing flat, single or double curved core composites 1, 23 with at least one folded honeycomb core 4, 19. Prior to applying the initially not yet hardened cover layers 2, 3, 13, 22 a curable and later removable core filler material 15, 16 is introduced into full-length drainage-enabling channels 5, 6 of the folded honeycomb core 4, 19 in order to prevent telegraphing of the cover layers 2, 3, 13, 22 into the channels 5, 6 of the folded honeycomb core when arranging and/or hardening the cover layers 2, 3, 13, 22 and to produce edge-free and polygon-free surfaces of the core composite 1, 23. The core composites 1, 23 made according to the method have optimum structural mechanical properties, an ideal surface quality from the aerodynamic and aesthetic point of view, whereby a direct reprocessing of the core composites 1, 23 is possible without the need for further time and cost-intensive as well as in some circumstances weight-increasing finishing steps. With the method it is possible to manufacture in particular one-piece fuselage sections with wound core composites 1, 23 with a folded honeycomb 4, 19 as well as shell segments with laid cover layers 2, 3, 13, 22 for longitudinally divided (segmented) fuselage sections for large aircraft.