Abstract:
An apparatus and method for manufacturing a display device substrate are provided. In one embodiment, the apparatus comprises a clamp for clamping an edge of a plastic substrate, and a tension member applying tension along a surface of the plastic substrate by interacting with the clamp to strain the plastic substrate. Advantageously, the flexible plastic substrate is substantially prevented from deflecting in a manufacturing process thereby reducing defects in the display device substrate.
Abstract:
An LCD includes a thin film display device having a plastic insulating substrate in which lifting of the edge of the thin film is avoided which includes a display region and a non-display region; a gate line assembly formed on the plastic insulating substrate with the use of a shadow mask disposed over the plastic insulating substrate; a gate insulating layer formed on the gate line assembly in the display region; a data line formed on the gate insulating layer and a data pad formed in the non-display region and spaced away from the gate insulating layer; and a passivation layer formed on the data line.
Abstract:
Provided is a substrate for a liquid crystal display which is resistant to deformation. The substrate includes a flexible substrate, first and second barrier layers respectively disposed on first and second surfaces of the flexible substrate, and first and second hard coating layers respectively disposed on the first and second barrier layers.
Abstract:
A jig for delivering a plastic plate used to make a lighter and thinner liquid crystal display plate and a method of fabricating a liquid crystal display are provided. The jig includes a support substrate, an adhesive layer disposed at the support substrate, and an adhesive agent layer disposed at the adhesive layer and surrounded by the adhesive layer.
Abstract:
Provided is a substrate for a liquid crystal display which is resistant to deformation. The substrate includes a flexible substrate, first and second barrier layers respectively disposed on first and second surfaces of the flexible substrate, and first and second hard coating layers respectively disposed on the first and second barrier layers.
Abstract:
An apparatus and method for manufacturing a display device substrate are provided. In one embodiment, the apparatus comprises a clamp for clamping an edge of a plastic substrate, and a tension member applying tension along a surface of the plastic substrate by interacting with the clamp to strain the plastic substrate. Advantageously, the flexible plastic substrate is substantially prevented from deflecting in a manufacturing process thereby reducing defects in the display device substrate.
Abstract:
Disclosed is an apparatus for manufacturing a liquid crystal display, the apparatus including: a first support member for supporting a substrate and a transfer photosensitive film disposed on the substrate and a second support member disposed to face the first support member. An elastic member is provided on the surface of the second support member for allowing the transfer photosensitive film to be moved into contact with the substrate. A driving unit is provided for moving the first support member and the second support member toward and away from each other. A vacuum chamber is provided for receiving the first support member and the second support member.
Abstract:
Disclosed herein is a novel gluconacetobacter strain having cellulose producing activity. Specifically, the present invention relates to a novel gluconacetobacter strain producing nano-structured cellulose in a highly efficient manner. The cellulose produced by the strain, due to its superb thermodynamic properties, can be characterized as nano-structured bacterial cellulose and therefore utilized as a bio-nano-fiber. Particularly, the cellulose can be impregnated with a resin to form a cellulose-based resin which can be effectively adapted for a substrate for a liquid crystal display (LCD).
Abstract:
An LCD panel with mixed substrate materials and a method of making the LCD panel are presented. The LCD panel is made of a first substrate, a second substrate disposed substantially parallel to the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The first substrate includes a glass substrate, a TFT formed on the glass substrate, and a color filter formed on the TFT. The second substrate includes a plastic substrate and a common electrode formed on the plastic substrate. Forming the color filter on the TFT eliminates the need to form black matrices on the second substrate, preventing misalignment of the two substrates due to different heat sensitivities. Since there is no concern of substrate misalignment caused by heat, laser beam can be used to cut the substrates during the manufacture of the LCD panel.
Abstract:
Provided is a substrate for a liquid crystal display which is resistant to deformation. The substrate includes a flexible substrate, first and second barrier layers respectively disposed on first and second surfaces of the flexible substrate, and first and second hard coating layers respectively disposed on the first and second barrier layers.