Abstract:
The present invention relates to a visible ray sensor and a light sensor capable of improving photosensitivity by preventing photodegradation. The visible ray sensor may include: a substrate, a light blocking member formed on the substrate, and a visible ray sensing thin film transistor formed on the light blocking member. The light blocking member may be made of a transparent electrode, a band pass filter, or an opaque metal.
Abstract:
A display substrate includes a switching transistor electrically connected to a gate line and a data line, the data line extending in a first direction substantially perpendicular to the gate line extending in a second direction, the switching transistor including a switching active pattern comprising amorphous silicon, a driving transistor electrically connected to a driving voltage line and the switching transistor, the driving voltage line extended in the first direction, the driving transistor including a driving active pattern comprising a metal oxide; and a light-emitting element electrically connected to the driving transistor.
Abstract:
An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer.
Abstract:
A display panel that includes: a substrate, a sensing transistor disposed on the substrate, and a readout transistor connected to the sensing transistor and transmitting a detecting signal is presented. The sensing transistor includes a semiconductor layer disposed on the upper substrate, a source electrode and a drain electrode disposed on the semiconductor layer, and a gate electrode overlapping the semiconductor layer on the source electrode and the drain electrode. Accordingly, in a display device and a manufacturing method thereof, an infrared sensing transistor, a visible light sensing transistor, and a readout transistor are simultaneously formed with a top gate structure such that the number of manufacturing processes and the manufacturing cost may be reduced.
Abstract:
A photosensor includes a sensing switching element, a sensing element, and a reset switching element. The sensing switching element includes an output terminal connected to a sensing signal line, a control terminal connected to a first gate line, and an input terminal connected to the first node. The sensing element includes an output terminal connected to a first node, a control terminal connected a second gate line disposed next to the first gate line, and an input terminal connected to a source voltage line transmitting a source voltage. The sensing element senses light. The reset switching element includes an output terminal connected to the first node, a control terminal connected to the second gate line, and an input terminal connected to a driving voltage line transmitting a driving voltage.
Abstract:
A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
Abstract translation:薄膜晶体管基板包括绝缘板; 设置在绝缘板上的栅电极; 包含金属氧化物的半导体层,其中所述金属氧化物具有小于或等于3%的氧缺陷,并且其中所述金属氧化物包含约0.01mol / cm 3至约0.3mol / cm 3的3d过渡金属; 设置在所述栅极电极和所述半导体层之间的栅极绝缘层; 以及设置在半导体层上的源电极和漏电极。 还描述了显示基板。 金属氧化物具有小于或等于3%的氧缺陷,并且掺杂有约0.01摩尔/ cm3至约0.3摩尔/ cm3的3d过渡金属。 金属氧化物包括氧化铟或二氧化钛。 3d过渡金属包括选自铬,钴,镍,铁,锰及其混合物中的至少一种3d过渡金属。
Abstract:
A display device includes: a substrate; an infrared sensing transistor on the substrate; a readout transistor connected to the infrared sensing transistor; a power source line; and a light blocking member on the infrared sensing transistor, where the infrared sensing transistor includes a light blocking film on the substrate, a first gate electrode contacting and overlapping the light blocking film and connected to a power source line, a first semiconductor layer on the first gate electrode overlapping the light blocking film, and first source and drain electrodes on the first semiconductor layer, where the readout transistor includes a second gate electrode on the substrate, a second semiconductor layer on the second gate electrode and overlapping the second gate electrode, and second source and drain electrodes the second semiconductor layer, and where the power source line and the first gate electrode are at a same layer.
Abstract:
A display device includes: a display panel; and a sensing signal processor connected to the display panel, in which the display panel includes: a gate line which transmits a gate signal; a sensing signal line crossing the gate line; a reference sensing signal line crossing the gate line; a sensing unit connected to the gate line and the sensing signal line, where the sensing unit senses light by a touch on the display panel; and a reference sensing unit connected to the gate line and the reference sensing signal line and blocked from the light by the touch, and where the sensing signal processor is connected to the sensing unit and the reference sensing unit and includes a comparator.
Abstract:
A thin film transistor substrate includes a base substrate, a gate electrode, a gate insulating layer, a surface treating layer, an active layer, a source electrode and a drain electrode. The gate electrode is formed on the base substrate. The gate insulating layer is formed on the base substrate to cover the gate electrode. The surface treating layer is formed on the gate insulating layer by treating the gate insulating layer with a nitrogen-containing gas to prevent leakage current. The active layer is formed on the surface treating layer to cover the gate electrode. The source electrode and the gate electrode that are spaced apart from each other by a predetermined distance are formed on the active layer.
Abstract:
A photonic sensor includes a first electrode layer, a second electrode layer, a third electrode layer, a first photon absorption layer, a second photon absorption layer, a third photon absorption layer and a charge blocking layer. The first photon absorption layer includes a dispersion of first nanoparticles, and is configured to transduce a first colored light into corresponding electric charge. The second photon absorption layer includes a dispersion of second nanoparticles, and is configured to transduce a second colored light into corresponding electric charge according to light intensity. The third photon absorption layer includes a dispersion of third nanoparticles, and is configured to transduce a third colored light into corresponding electric charge according to light intensity. The charge blocking layer is formed between the first and second photon absorption layers to block flow of electric charge between the first and second photon absorption layers.