摘要:
A liquid crystal display according to the present invention uses an organic layer treated with H2 plasma before fabricating an inorganic layer on the top of the organic layer. When forming thin film transistors (TFT) used in the LCD, an Indium Tin Oxide layer is fabricated above the TFTs and acts as a pixel electrode. When the organic layer, such as a passivation layer, is treated with the H2 plasma, an intermediate layer having an O—H bonding structure is formed to enhance bonding or attachment of an inorganic layer, such as an ITO layer, to the organic layer.
摘要:
A liquid crystal display according to the present invention uses an organic layer treated with H2 plasma before fabricating an inorganic layer on the top of the organic layer. When forming thin film transistors (TFT) used in the LCD, an Indium Tin Oxide layer is fabricated above the TFTs and acts as a pixel electrode. When the organic layer, such as a passivation layer, is treated with the H2 plasma, an intermediate layer having an O—H bonding structure is formed to enhance bonding or attachment of an inorganic layer, such as an ITO layer, to the organic layer.
摘要:
A liquid crystal display according to the present invention uses an organic layer treated with H2 plasma before fabricating an inorganic layer on the top of the organic layer. When forming thin film transistors (TFT) used in the LCD, an Indium Tin Oxide layer is fabricated above the TFTs and acts as a pixel electrode. When the organic layer, such as a passivation layer, is treated with the H2 plasma, an intermediate layer having an O—H bonding structure is formed to enhance bonding or attachment of an inorganic layer, such as an ITO layer, to the organic layer.
摘要:
An array substrate for a transflective liquid crystal display device, including a substrate; at least one gate line and at least one gate electrode formed on the transparent substrate; a gate-insulating layer formed over the at least one gate line and the at least one gate electrode; a silicon layer formed on the gate-insulating layer, the silicon layer being positioned above the at least one gate electrode; a source electrode and a drain electrode formed on the silicon layer and spaced apart from each other with the silicon layer overlapped therebetween, wherein the at least one gate electrode, the source electrode, the drain electrode, and the silicon layer define a thin film transistor (TFT); at least one data line; a first passivation layer covering the at least one data line; a transparent electrode formed on the first passivation layer; and a reflective electrode formed on the transparent electrode.
摘要:
An array substrate for a transflective liquid crystal display device, including a substrate; at least one gate line and at least one gate electrode formed on the transparent substrate; a gate-insulating layer formed over the at least one gate line and the at least one gate electrode; a silicon layer formed on the gate-insulating layer, the silicon layer being positioned above the at least one gate electrode; a source electrode and a drain electrode formed on the silicon layer and spaced apart from each other with the silicon layer overlapped therebetween, wherein the at least one gate electrode, the source electrode, the drain electrode, and the silicon layer define a thin film transistor (TFT); at least one data line; a first passivation layer covering the at least one data line; a transparent electrode formed on the first passivation layer; and a reflective electrode formed on the transparent electrode.
摘要:
An array test method of an organic light emitting diode (OLED) display substrate is provided. The OLED display substrate includes a plurality of pixel circuits. Each pixel circuit includes an anode, a first transistor for transmitting a data signal that controls an amount of light emission of an OLED according to a scan signal, a driving transistor for receiving the data signal, generating a driving current corresponding to the data signal, and transmitting the driving current to the OLED, and a second transistor for diode-connecting a gate electrode and a drain electrode of the driving transistor. The array test method includes: injecting electrons or holes that generate an initialization voltage into the anode by turning on the second transistor; radiating electron beams at the anode; and determining whether or not the driving transistor performs normal operation from an amount of secondary electrons emitted from the anode.
摘要:
A pixel includes an organic light emitting diode, a first transistor that is connected to a first power source and that supplies a driving current according to a corresponding data voltage to the organic light emitting diode, a second transistor that is connected to a scan line and that transmits the corresponding data voltage from a data line to a driving transistor according to a scan signal transmitted from the scan line, and a first capacitor including one electrode connected to a gate electrode of the first transistor. The first capacitor stores the corresponding data voltage as a first voltage and a size of the first capacitor is in a range of about 2 times to about 4 times a size of a gate insulating layer of the first transistor.
摘要:
An organic light-emitting display apparatus includes a buffer layer that is on a substrate and includes nanoparticles including nickel (Ni), a pixel electrode on the buffer layer, an organic emission layer on the pixel electrode, and an opposite electrode on the organic emission layer. A method of manufacturing the organic light-emitting display apparatus is provided.
摘要:
An organic light-emitting display apparatus includes a plurality of pixels, each defined by a scan line, a data line, and a power supply line, a plurality of control lines branching off of one wire in a first direction and simultaneously transferring control signals to the plurality of pixels; and a plurality of repair bridges placed between neighboring ones of the plurality of control lines, each of the plurality of repair bridges including a first bridge connected to one of the neighboring ones of the plurality of control lines and a second bridge connected to another one of the neighboring control lines.
摘要:
A scan driving device includes: a first scan driving block group including scan driving blocks receiving at least two different clock signals among a plurality of scan driving blocks which are sequentially arranged; a second scan driving block group including scan driving blocks receiving at least two clock signals which are the same as at least two clock signals inputted to each of the scan driving blocks included in the first scan driving block group; first line transistors connected in parallel to scan lines of each of the scan driving blocks included in the first scan driving block group, and turned on or off according to a first line connection signal; and second line transistors connected in parallel to a scan line of each of the scan driving blocks included in the second scan driving block group and turned on or off according to a second line connection signal.