Abstract:
The present invention relates to immunoglobulins that bind IgE and FcγRIIb with high affinity, said compositions being capable of inhibiting cells that express membrane-anchored IgE. Such compositions are useful for treating IgE-mediated disorders, including allergies and asthma.
Abstract:
The present invention relates to immunoglobulins that bind IgE and FcγRIIb with high affinity, said compositions being capable of inhibiting cells that express membrane-anchored IgE. Such compositions are useful for treating IgE-mediated disorders, including allergies and asthma.
Abstract:
The present invention relates to immunoglobulins that bind IgE and FcγRIIb with high affinity, said compositions being capable of inhibiting cells that express membrane-anchored IgE. Such compositions are useful for treating IgE-mediated disorders, including allergies and asthma.
Abstract:
The present invention relates to immunoglobulins that bind IgE and FcγRIIb with high affinity, said compositions being capable of inhibiting cells that express membrane-anchored IgE. Such compositions are useful for treating IgE-mediated disorders, including allergies and asthma.
Abstract:
Provided herein are novel CLDN6 binding domains, and anti-CLDN6×anti-CD3 antibodies that include such CLDN6 binding domains. Also provided herein are methods of using such antibodies for the treatment of CLDN6-associated cancers.
Abstract:
The present invention relates to immunoglobulins that bind IgE and FcγRIIb with high affinity, said compositions being capable of inhibiting cells that express membrane-anchored IgE. Such compositions are useful for treating IgE-mediated disorders, including allergies and asthma.
Abstract:
Provided herein are novel CLDN6 binding domains, and anti-CLDN6×anti-CD3 antibodies that include such CLDN6 binding domains. Also provided herein are methods of using such antibodies for the treatment of CLDN6-associated cancers.