Abstract:
A process including: creating a composition composed of a liquid and a self-organizable polymer at least partially dissolved in the liquid, resulting in dissolved polymer molecules; reducing the solubility of the dissolved polymer molecules to induce formation of structurally ordered polymer aggregates in the composition; depositing a layer of the composition including the structurally ordered polymer aggregates; and drying at least partially the layer to result in a structurally ordered layer, wherein the structurally ordered layer is part of an electronic device and the structurally ordered layer exhibits increased charge transport capability.
Abstract:
A field effect transistor composed of: an insulating layer; a gate electrode; a semiconductor layer including an organic semiconductor material and a binder resin; a source electrode; and a drain electrode, wherein the insulating layer, the gate electrode, the semiconductor layer, the source electrode, and the drain electrode are in any sequence as long as the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconductor layer.
Abstract:
A process including: selecting a composition including a polymer and a liquid, wherein the polymer exhibits lower solubility in the liquid at room temperature but exhibits greater solubility in the liquid at an elevated temperature, wherein the composition gels when the elevated temperature is lowered to a first lower temperature without agitation; dissolving at the elevated temperature at least a portion of the polymer in the liquid; lowering the temperature of the composition from the elevated temperature to the first lower temperature; agitating the composition to disrupt any gelling, wherein the agitating commences at any time prior to, simultaneous with, or subsequent to the lowering the elevated temperature of the composition to the first lower temperature; depositing a layer of the composition wherein the composition is at a second lower temperature lower than the elevated temperature; and drying at least partially the layer.
Abstract:
A process comprising: creating a dispersion including: (a) a continuous phase comprising a solvent, a binder resin at least substantially dissolved in the solvent, and (b) a disperse phase comprising an organic semiconductor material; and solution coating using the dispersion to form a semiconductor layer of an electronic device, wherein the semiconductor layer comprises the organic semiconductor material and the binder resin.
Abstract:
An electronic device containing a polythiophene derived from a monomer segment or monomer segments containing two 2,5-thienylene segments, (I) and (II), and an optional divalent linkage D 1 wherein A is a side chain; B is hydrogen or a side chain; and D is a divalent linkage, and wherein the number of A-substituted thienylene units (I) in the monomer segments is from about 1 to about 10, the number of B-substituted thienylene units (II) is from 0 to about 5, and the number of divalent linkages D is 0 or 1.
Abstract:
A display material for use in an electric paper system includes two opposing outer surfaces, between which is disposed a plurality of optically and electrically anisotropic elements suspended in a substance capable of being liquified. A rotatable disposition of each element is achievable while the element is suspended in the substance and the substance is liquified.
Abstract:
A thin film transistor wherein the semiconductor layer is prepared by a process including: creating a composition comprising a liquid and a self-organizable polymer at least partially dissolved in the liquid, resulting in dissolved polymer molecules; reducing the solubility of the dissolved polymer molecules to induce formation of structurally ordered polymer aggregates in the composition; depositing a layer of the composition including the structurally ordered polymer aggregates; and drying at least partially the layer resulting in the structurally ordered semiconductor layer, wherein the structural order of the semiconductor layer increases the charge transport capability of the semiconductor layer.
Abstract:
A thin film transistor including: an insulating layer; a gate electrode; a semiconductor layer including coalesced structurally ordered polymer aggregates of a self-organizable polymer, wherein the self-organizable polymer is of a type capable of gelling; a source electrode; and a drain electrode, wherein the insulating layer, the gate electrode, the semiconductor layer, the source electrode, and the drain electrode are in any sequence as long as the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconductor layer.
Abstract:
A polythiophene wherein the monomer segments thereof contain 1 wherein A is a side chain; B is hydrogen or a side chain; and D is a divalent segment, and wherein the number of A-substituted thienylene units (I) in the monomer segments is from about 1 to about 10, the number of B-substituted thienylene units (II) is from 0 to about 5, and the number of divalent segments D is 0 or 1.
Abstract:
An electronic device containing a polythiophene of Formula (I) 1 wherein R and Rnull are side chains; A is a divalent linkage; x and y represent the number of unsubstituted thienylene units; z is 0 or 1, and wherein the sum of x and y is greater than about zero; m represents the number of segments; and n represents the degree of polymerization.